【題目】【2015高考福建文數(shù)】全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國網(wǎng)民中影響了的綜合指標(biāo).根據(jù)相關(guān)報道提供的全網(wǎng)傳播2015年某全國性大型活動的省級衛(wèi)視新聞臺融合指數(shù)的數(shù)據(jù),對名列前20名的省級衛(wèi)視新聞臺的融合指數(shù)進(jìn)行分組統(tǒng)計,結(jié)果如表所示.

組號

分組

頻數(shù)

1

2

2

8

3

7

4

3

)現(xiàn)從融合指數(shù)在內(nèi)的省級衛(wèi)視新聞臺中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在的概率;

)根據(jù)分組統(tǒng)計表求這20家省級衛(wèi)視新聞臺的融合指數(shù)的平均數(shù).

【答案】(;(

【解析】解法一:(I)融合指數(shù)在內(nèi)的省級衛(wèi)視新聞臺記為,,;融合指數(shù)在內(nèi)的省級衛(wèi)視新聞臺記為,.從融合指數(shù)在內(nèi)的省級衛(wèi)視新聞臺中隨機(jī)抽取家的所有基本事件是:,,,,,,共個.

其中,至少有家融合指數(shù)在內(nèi)的基本事件是:,,,,,,共個.

所以所求的概率

(II)這省級衛(wèi)視新聞臺的融合指數(shù)平均數(shù)等于

解法二:(I)融合指數(shù)在內(nèi)的省級衛(wèi)視新聞臺記為,;融合指數(shù)在內(nèi)的省級衛(wèi)視新聞臺記為,.從融合指數(shù)在內(nèi)的省級衛(wèi)視新聞臺中隨機(jī)抽取家的所有基本事件是:,,,,,,,共個.

其中,沒有家融合指數(shù)在內(nèi)的基本事件是:,共個.

所以所求的概率

(II)同解法一.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點(diǎn),連接OF并延長交 于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BA的延長線于點(diǎn)E.

(1)求證:AC∥DE;
(2)連接CD,若OA=AE=a,寫出求四邊形ACDE面積的思路.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對邊分別為a,b,c,已知 . (Ⅰ)若b= ,當(dāng)△ABC周長取最大值時,求△ABC的面積;
(Ⅱ)設(shè) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆湖南省長沙市高三上學(xué)期統(tǒng)一模擬考試文數(shù)】已知過的動圓恒與軸相切,設(shè)切點(diǎn)為是該圓的直徑.

(Ⅰ)求點(diǎn)軌跡的方程;

(Ⅱ)當(dāng)不在y軸上時,設(shè)直線與曲線交于另一點(diǎn),該曲線在處的切線與直線交于點(diǎn).求證: 恒為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)判斷f(x)的單調(diào)性,說明理由.
(2)解方程f(2x)=f1(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)2ax,x(0,1].若f(x)(0,1]上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對一批底部周長屬于[80,130](單位:cm)的樹木進(jìn)行研究,從中隨機(jī)抽出200株樹木并測出其底部周長,得到頻率分布直方圖如圖所示,由此估計,這批樹木的底部周長的眾數(shù)是cm,中位數(shù)是cm,平均數(shù)是cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,角,所對的邊分別是,,且點(diǎn),動點(diǎn)滿足為常數(shù)且),動點(diǎn)的軌跡為曲線.

(Ⅰ)試求曲線的方程;

(Ⅱ)當(dāng)時,過定點(diǎn)的直線與曲線交于,兩點(diǎn),是曲線上不同于,的動點(diǎn),試求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖所示.

(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[﹣ , ]時,求函數(shù)y=f(x+ )﹣ f(x+ )的最值.

查看答案和解析>>

同步練習(xí)冊答案