【題目】某研究所計(jì)劃利用“神十”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載若干件新產(chǎn)品A、B,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生的收益來決定具體搭載安排,有關(guān)數(shù)據(jù)如下表:

每件產(chǎn)品A

每件產(chǎn)品B

研制成本、搭載
費(fèi)用之和(萬元)

20

30

計(jì)劃最大資金額
300萬元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預(yù)計(jì)收益(萬元)

80

60

分別用x,y表示搭載新產(chǎn)品A,B的件數(shù).總收益用Z表示
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(2)問分別搭載新產(chǎn)品A、B各多少件,才能使總預(yù)計(jì)收益達(dá)到最大?并求出此最大收益.

【答案】
(1)解:由已知x,y滿足的數(shù)學(xué)關(guān)系式為 ,且x∈N,y∈N,

該二元一次不等式組所表示的區(qū)域?yàn)閳D中的陰影部分.


(2)解:設(shè)最大收益為z萬元,則目標(biāo)函數(shù)z=80x+60y.

作出直線la:4x+3y=0并平移,由圖象知,

當(dāng)直線經(jīng)過M點(diǎn)時(shí),z能取到最大值,

解得 且滿足x∈N,y∈N,即M(9,4)是最優(yōu)解,

所以zmax=80×9+60×4=960(萬元),

答:搭載A產(chǎn)品9件,B產(chǎn)品4件,能使總預(yù)計(jì)收益達(dá)到最大值,最大預(yù)計(jì)收益為960萬元.


【解析】(1)由題意,列出關(guān)于x,y的不等式組,由不等式組得到平面區(qū)域即可;(2)列出目標(biāo)函數(shù),根據(jù)(1)的約束條件以及可行域,結(jié)合目標(biāo)函數(shù)的幾何意義求最大值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中.

(1)求證:AC⊥平面B1BDD1;
(2)求三棱錐B﹣ACB1體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+a.
(1)若對(duì)任意的實(shí)數(shù)x都有f(1+x)=f(1﹣x)成立,求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間[1,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)求曲線在點(diǎn)處的切線方程;

2)當(dāng)時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為得到函數(shù)y=sin(x+ )的圖象,可將函數(shù)y=sinx的圖象向左平移m個(gè)單位長度,或向右平移n個(gè)單位長度(m,n均為正數(shù)),則|m﹣n|的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心在直線y=4x上,且與直線l:x+y﹣2=0相切于點(diǎn)P(1,1).
(1)求圓的方程;
(2)直線kx﹣y+3=0與該圓相交于A、B兩點(diǎn),若點(diǎn)M在圓上,且有向量 (O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長均為2,平面平面, , 的中點(diǎn).

(1)證明: ;

(2)若是棱的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列前5項(xiàng)和為50, ,數(shù)列的前項(xiàng)和為 , .

(Ⅰ)求數(shù)列 的通項(xiàng)公式;

(Ⅱ)若數(shù)列滿足, ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)y=sin2x的圖象,只要將y=sin(2x+ )函數(shù)的圖象(
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案