【題目】已知等差數(shù)列前5項和為50, ,數(shù)列的前項和為, , .

(Ⅰ)求數(shù)列 的通項公式;

(Ⅱ)若數(shù)列滿足, ,求的值.

【答案】(1) ;(2) .

【解析】試題分析: (I)設(shè)等差數(shù)列{an}的公差為d,利用等差數(shù)列的通項公式及其前n項和公式即可首項和公差,即可求出數(shù)列{an}的通項公式,再根據(jù)數(shù)列的遞推公式可得所以{bn}為首項為1,公比為4的等比數(shù)列,即可求出數(shù)列{bn}的通項公式

(II)根據(jù)數(shù)列的遞推公式先求出{cn}的通項公式,再分組求和.

試題解析:

(Ⅰ)設(shè)等差數(shù)列的公差為

依題意得 解得, ,

所以.

當(dāng)時, ,

當(dāng)時, ,

,

以上兩式相減得,則

,所以, .

所以為首項為1,公比為4的等比數(shù)列,

所以

(Ⅱ)因為,

當(dāng)時, ,

以上兩式相減得, 所以, .

當(dāng)時, ,所以,不符合上式,

所以

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= .(x>0)
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)若當(dāng)x>0時,f(x)> 恒成立,求正整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究所計劃利用“神十”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載若干件新產(chǎn)品A、B,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生的收益來決定具體搭載安排,有關(guān)數(shù)據(jù)如下表:

每件產(chǎn)品A

每件產(chǎn)品B

研制成本、搭載
費用之和(萬元)

20

30

計劃最大資金額
300萬元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預(yù)計收益(萬元)

80

60

分別用x,y表示搭載新產(chǎn)品A,B的件數(shù).總收益用Z表示
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(2)問分別搭載新產(chǎn)品A、B各多少件,才能使總預(yù)計收益達到最大?并求出此最大收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC A1B1C1中,側(cè)棱垂直于底面,ABBC, ,

E,F分別是A1C1BC的中點.

(Ⅰ)求證:C1F∥平面ABE;

(Ⅱ)求三棱錐E-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分,1小問5分,2小問7分

圖,橢圓的左、右焦點分別為的直線交橢圓于兩點,且

1求橢圓的標(biāo)準(zhǔn)方程

2求橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某高中學(xué)生每天的睡眠時間,現(xiàn)隨機對20名男生和20名女生進行問卷調(diào)查,結(jié)果如下:
女生:

睡眠時間(小時)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9]

人數(shù)

2

4

8

4

2

男生:

睡眠時間(小時)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9]

人數(shù)

1

5

6

5

3


(1)現(xiàn)把睡眠時間不足5小時的定義為“嚴(yán)重睡眠不足”,從睡眠時間不足6小時的女生中隨機抽取2人,求此2人中恰有一人為“嚴(yán)重睡眠不足”的概率;
(2)完成下面2×2列聯(lián)表,并回答是否有90%的把握認(rèn)為“睡眠時間與性別有關(guān)”?

睡眠時間少于7小時

睡眠時間不少于7小時

合計

男生

女生

合計

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈R,[x]表示不超過x的最大整數(shù),若函數(shù) 有且僅有3個零點,則實數(shù)a的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},求不等式a(x2+1)+b(x﹣1)+c>2ax的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當(dāng)0<a<1且t=﹣1時,解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=afx+tx2﹣2t+1在區(qū)間(﹣1,2]上有零點,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案