【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當時,記函數(shù)的極小值為,若恒成立,求滿足條件的最小整數(shù).
【答案】(1)見解析;(2)0.
【解析】試題分析:(1)求函數(shù)的定義域和導數(shù),討論的取值范圍,利用函數(shù)單調(diào)性和導數(shù)之間的關系進行求解即可.
(2)根據(jù)(1)求出求出函數(shù)的極小值為若
恒成立,轉化為恒成立,構造函數(shù)設 根據(jù)導數(shù)和函數(shù)的函數(shù),求出 即可求出滿足條件的最小整數(shù)
試題解析:
(1)的定義域為,
①若,當時, ,
故在單調(diào)遞減,
②若,由,得,
(ⅰ)若,當時, ,
當時, ,
故在單調(diào)遞減,在, 單調(diào)遞增
(ⅱ)若, , 在單調(diào)遞增,
(ⅲ)若,當時, ,
當時, ,
故在單調(diào)遞減,在, 單調(diào)遞增
(2)由(1)得:若, 在單調(diào)遞減,
在, 單調(diào)遞增
所以時, 的極小值為
由恒成立,
即恒成立
設,
令,
當時,
所以在單調(diào)遞減,
且,
所以, ,
且, , ,
所以,
因為
得其中,
因為在上單調(diào)遞增
所以
因為, ,所以
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列是各項均為正數(shù)且公比不等于1的等比數(shù)列,對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”,現(xiàn)有定義在上的如下函數(shù):①,②,③;④,則為“保比差數(shù)列函數(shù)”的所有序號為( )
A.①②B.①②④C.③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù),當時,.
()求出函數(shù)在上的解析式;
()畫出函數(shù)的圖象,并根據(jù)圖象直接寫出的單調(diào)區(qū)間;
()求使時的的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分) 已知雙曲線的兩個焦點為的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸、硝酸鹽18噸;生產(chǎn)1車皮乙種肥料的主要原料是磷酸鹽1噸、硝酸鹽15噸,現(xiàn)庫存磷酸鹽10噸、硝酸鹽66噸,在此基礎上生產(chǎn)這兩種混合肥料。如果生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為12000元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為7000元。那么可產(chǎn)生最大的利潤是__________元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差的等差數(shù)列的前項和為,且滿足,.
(1)求數(shù)列的通項公式;
(2)求證:是數(shù)列中的項;
(3)若正整數(shù)滿足如下條件:存在正整數(shù),使得數(shù)列,,為遞增的等比數(shù)列,求的值所構成的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2005年12月15日,中央密蘇里州立大學的教授 Curtis Cooper Steven Boone發(fā)現(xiàn)了第43個麥森質(zhì)數(shù).這個質(zhì)數(shù)是______位數(shù);它的末兩位數(shù)是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com