【題目】已知點,,在圓E上,過點的直線l與圓E相切.
Ⅰ求圓E的方程;
Ⅱ求直線l的方程.
【答案】(Ⅰ);(Ⅱ)直線l的方程為或.
【解析】
Ⅰ根據(jù)題意,設(shè)圓E的圓心為,半徑為r;將A、B、C三點的坐標(biāo)代入圓E的方程可得,即可得圓E的方程;Ⅱ根據(jù)題意,分2種情況討論:,當(dāng)直線l的斜率不存在時,直線l的方程為,驗證可得此時符合題意,,當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,即,由直線與圓的位置關(guān)系計算可得k的值,可得此時直線的方程,綜合即可得答案.
Ⅰ根據(jù)題意,設(shè)圓E的圓心為,半徑為r;
則圓E的方程為,
又由點,,在圓E上,
則有,解可得,
即圓E的方程為;
Ⅱ根據(jù)題意,分2種情況討論:
,當(dāng)直線l的斜率不存在時,直線l的方程為,與圓M相切,符合題意;
,當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,即,
圓心E到直線l的距離,解可得,
則直線l的方程為,即,
綜合可得:直線l的方程為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓過點A(2,1),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓相交于B,C兩點(異于點A),線段BC被y軸平分,且,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均不相等的等差數(shù)列的前五項和,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)若為數(shù)列的前項和,且存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國2018年1月至12月石油進口量統(tǒng)計圖(其中同比是今年第個月與去年第個月之比),則下列說法錯誤的是( )
A.2018年下半年我國原油進口總量高于2018年上半年
B.2018年12個月中我國原油月最高進口量比月最低進口量高1152萬噸
C.2018年我國原油進口總量高于2017年我國原油進口總量
D.2018年1月—5月各月與2017年同期相比較,我國原油進口量有增有減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)積極發(fā)展電商,通過近些年工作的開展在新農(nóng)村建設(shè)和扶貧過程中起到了非常重要的作用,促進了農(nóng)民生活富裕,為了更好地了解本地區(qū)某一特色產(chǎn)品的宣傳費 (千元)對銷量 (千件)的影響,統(tǒng)計了近六年的數(shù)據(jù)如下:
(1)若近6年的宣傳費與銷量呈線性分布,由前5年數(shù)據(jù)求線性回歸直線方程,并寫出的預(yù)測值;
(2)若利潤與宣傳費的比值不低于20的年份稱為“吉祥年”,在這6個年份中任意選2個年份,求這2個年份均為“吉祥年”的概率
附:回歸方程的斜率與截距的最小二乘法估計分別為,
,其中, 為, 的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為2的正方形,垂直于底面,.
(1)求證;
(2)求平面與平面所成二面角的大。
(3)設(shè)棱的中點為,求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)為偶函數(shù).
(1) 求的值;
(2)若的最小值為,求的最大值及此時的取值;
(3)在(2)的條件下,設(shè)函數(shù),其中.已知在處取得最小值并且點是其圖象的一個對稱中心,試求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com