數(shù)列{an}的通項(xiàng)公式為an=(-1)n-1•(4n-3),則它的前100項(xiàng)之和S100等于(  )
分析:根據(jù)題中的熟練公式可得a1=1,a2=-5,a3=9,a4=-13,…a99=393,a100=-397,并且觀察其特點(diǎn)利用分組求和的方法進(jìn)行求和,進(jìn)而得到答案.
解答:解:由題意可得:數(shù)列{an}的通項(xiàng)公式為an=(-1)n-1•(4n-3),
所以a1=1,a2=-5,a3=9,a4=-13,…a99=393,a100=-397,
所以S100=(a1+a2)+(a3+a4)+…+(a99+a100),
所以S100=-(4+4+…+4)=-200.
故選B.
點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是熟練掌握熟練求和的基本方法,即分組求和、錯(cuò)位相減、裂項(xiàng)相消、倒序相加等方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和Sn=2n2+n-1,則數(shù)列{an}的通項(xiàng)公為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數(shù)列{an}的通項(xiàng)公an
(2)若記bn=(2n+1)•(
1Sn
+2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數(shù)列{an}的通項(xiàng)公an
(2)若記數(shù)學(xué)公式,Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列{an}的前n項(xiàng)和Sn=2n2+n-1,則數(shù)列{an}的通項(xiàng)公為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2002-2003學(xué)年北京市朝陽(yáng)區(qū)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

數(shù)列{an}的前n項(xiàng)和Sn=2n2+n-1,則數(shù)列{an}的通項(xiàng)公為   

查看答案和解析>>

同步練習(xí)冊(cè)答案