17.在2×2列聯(lián)表中,兩個比值相差越大,兩個分類變量有關(guān)系的可能性就越大,那么這兩個比值為(  )
A.$\frac{a}{a+b}$與$\frac{c}{c+d}$B.$\frac{a}{c+d}$與$\frac{c}{a+b}$C.$\frac{a}{a+d}$與$\frac{c}{b+c}$D.$\frac{a}{b+d}$與$\frac{c}{a+c}$

分析 由題意,$\frac{a}{a+b}$-$\frac{c}{c+d}$=$\frac{ac+ad-ac-bc}{(a+b)(c+d)}$=$\frac{ad-bc}{(a+b)(c+d)}$,根據(jù)ad-bc相差越大,兩個分類變量有關(guān)系的可能性就越大,即可得出結(jié)論.

解答 解:由題意,$\frac{a}{a+b}$-$\frac{c}{c+d}$=$\frac{ac+ad-ac-bc}{(a+b)(c+d)}$=$\frac{ad-bc}{(a+b)(c+d)}$,
∵ad-bc相差越大,兩個分類變量有關(guān)系的可能性就越大,
∴$\frac{a}{a+b}$-$\frac{c}{c+d}$相差越大,兩個分類變量有關(guān)系的可能性就越大,
故選:A.

點評 本題考查獨立性檢驗知識的運用,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a,b為實數(shù),且a≠b,a<0,則a<2b-$\frac{b^2}{a}$.(填“>”、“<”或“=”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖一段程序執(zhí)行后輸出結(jié)果是( 。
A.2B.8C.18D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)$y=sin(x-\frac{π}{3})$的圖象的一條對稱軸是( 。
A.$x=\frac{π}{6}$B.$x=-\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.盒子中有大小形狀完全相同的4個紅球和3個白球,從中不放回的一次摸出兩個球,在第一次摸出的是紅球的前提下,第二次也摸出紅球的概率為( 。
A.$\frac{2}{7}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.點P在橢圓$\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{9}$=1上,點P到直線3x-4y=24的最大距離等于$\frac{12}{5}$(2+$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)方程$\frac{x^2}{m+2}-\frac{y^2}{2m-1}=1$表示雙曲線,則實數(shù)m的取值范圍是(-∞,-2)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若直線l的方向向量$\overrightarrow a=(1,1,1)$,平面α的一個法向量$\overrightarrow n=(2,-1,1)$,則直線l與平面α所成角的正弦值等于$\frac{{\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=$sinx•cosx-\frac{{\sqrt{3}}}{3}{sin^2}x(0<x<\frac{π}{3})$的值域是(0,$\frac{\sqrt{3}}{6}$].

查看答案和解析>>

同步練習(xí)冊答案