精英家教網 > 高中數學 > 題目詳情

已知△ABC的三個頂點,A (1,5),B(-2,4),C(-6,-4),M是BC邊上一點,且△ABM的面積是△ABC面積的,則線段AM的長度是       

 

【答案】

5

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知△ABC的三個頂點在半徑為1的球面上,且AB=1,BC=
3
.若A、C兩點的球面距離為
π
2
,則球心O到平面ABC的距離為(  )
A、
1
4
B、
2
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=8ln(1+ex)-9x.
(1)證明:函數f(x)對于定義域內任意x1,x2(x1≠x2)都有:f(
x1+x2
2
)<
f(x1)+f(x2)
2
成立.
(2)已知△ABC的三個頂點A、B、C都在函數y=f(x)的圖象上,且橫坐標依次成等差數列,求證:△ABC是鈍角三角形,但不可能是等腰三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三個頂點為A(2,8),B(-4,0),C(6,0),那么過點B將△ABC的面積平分的直線方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三個頂點A,B,C及平面內一點P滿足:
PA
+
PB
+
PC
=
0
,若實數λ 滿足:
AB
+
AC
AP
,則λ的值為( 。
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•南京一模)已知△ABC的三個頂點在同一球面上,∠BAC=90°,AB=AC=2.若球心O到平面ABC的距離為1,則該球的半徑為( 。

查看答案和解析>>

同步練習冊答案