精英家教網 > 高中數學 > 題目詳情

【題目】如圖,等腰直角是直角,平面平面,,,.

(1)求證;

(2)求直線與平面所成角的正弦值.

【答案】(1)詳見解析;(2).

【解析】

(1)由為直角可得到,結合已知條件命題得證。

(2),連結.由(1)得: ,作,再證得:平面,則即為所求線面角. 解三角形BFH即可。

解:(1)證明:直角中∠B是直角,即,

,

,

,.

(2)方法一:作,連結.

由(1)知平面,

得到,又,所以平面.

又因為平面,所以平面 平面.

于點H,易得平面

即為所求線面角.

,由已知得

,,

.

則直線與平面所成角的正弦值為.

方法二:建立如圖所示空間直角坐標系,

因為.

由已知,,,

,

,

設平面的法向量為,則有

,,則.

.

所以直線與平面所成角的正弦值.

方法三(等積法):設2AF=AB=BE=2,為等腰三角形,AB=BC=2

FAB=60°,2AF=AB ,又AF//BE,.

由(1)知,,

,

,,

,則有.

到平面距離為,有,

故所求線面角.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,一個圓錐形量杯的高為厘米,其母線與軸的夾角為

(1)求該量杯的側面積;

(2)若要在該圓錐形量杯的一條母線上,刻上刻度,表示液面到達這個刻度時,量杯里的液體的體積是多少.當液體體積是立方厘米時,刻度的位置與頂點之間的距離是多少厘米(精確到厘米)?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax3+bx2+cx+dx=1處取極小值,x=3處取極大值,且函數圖象在(2,f(2))處的切線與直線x-5y=0平行.

1)求實數abc的值;

2)設函數f(x)=0有三個不相等的實數根,求d的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中實數a為常數.

(I)a=-l時,確定的單調區(qū)間:

(II)f(x)在區(qū)間e為自然對數的底數)上的最大值為-3,求a的值;

(Ⅲ)a=-1時,證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點投籃一次,以后都在B點投籃;方案乙:始終在B點投籃.每次投籃之間相互獨立.某選手在A點命中的概率為,命中一次記3分,沒有命中得0分;在B點命中的概率為,命中一次記2分,沒有命中得0分,用隨機變量表示該選手一次投籃測試的累計得分,如果的值不低于3分,則認為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3.

(1)若該選手選擇方案甲,求測試結束后所得分的分布列和數學期望.

(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知。

(1)當時,求f(x)的最大值。

(2)若函數f(x)的零點個數為2個,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如今我們的互聯網生活日益豐富,除了可以很方便地網購,網絡外賣也開始成為不少人日常生活中不可或缺的一部分.某市一調查機構針對該市市場占有率最高的甲、乙兩家網絡外賣企業(yè)(以下簡稱外賣甲,外賣乙)的經營情況進行了調查,調查結果如表:

1日

2日

3日

4日

5日

外賣甲日接單(百單)

5

2

9

8

11

外賣乙日接單(百單)

2.2

2.3

10

5

15

(1)據統(tǒng)計表明,之間具有線性相關關系.

(。┱堄孟嚓P系數加以說明:(若,則可認為有較強的線性相關關系(值精確到0.001))

(ⅱ)經計算求得之間的回歸方程為.假定每單外賣業(yè)務企業(yè)平均能獲純利潤3元,試預測當外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍:(值精確到0.01)

(2)試根據表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經營狀況.

相關公式:相關系數,

參考數據:

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在地面上同一地點觀測遠方勻速垂直上升的熱氣球,在上午10點整熱氣球的仰角是,到上午10點20分的仰角變成.請利用下表判斷到上午11點整時,熱氣球的仰角最接近哪個度數( )

0.5

0.559

0.629

0.643

0.656

0.669

0.682

0.695

0.707

0.866

0.829

0.777

0.766

0.755

0.743

0.731

0.719

0.707

0.577

0.675

0.810

0.839

0.869

0.900

0.933

0.966

1.0

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面內有12個點,其中任意三點不共線,每兩點連一條線段(或邊)。這些線段用紅、藍兩色染色,每條線段恰染一色,其中,從某點出發(fā)的紅色線段有奇數條,而從其余11個點出發(fā)的紅色線段數互不相同。求以已知點為頂點、各邊均為紅色的三角形個數及兩邊為紅色、另一邊為藍色的三角形個數。

查看答案和解析>>

同步練習冊答案