【題目】如圖,等腰直角中是直角,平面平面,,,.
(1)求證;
(2)求直線與平面所成角的正弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)由及為直角可得到,結合已知條件命題得證。
(2)作,連結.由(1)得: ,作,再證得:平面,則即為所求線面角. 解三角形BFH即可。
解:(1)證明:直角中∠B是直角,即,
, ,
,,
又,.
(2)方法一:作,連結.
由(1)知平面,
得到,又,所以平面.
又因為平面,所以平面 平面.
作于點H,易得平面,
則即為所求線面角.
設,由已知得,,
,,
.
則直線與平面所成角的正弦值為.
方法二:建立如圖所示空間直角坐標系,
因為.
由已知,,,,
,
,,
設平面的法向量為,則有
,令,則.
即.
所以直線與平面所成角的正弦值.
方法三(等積法):設2AF=AB=BE=2,為等腰三角形,AB=BC=2
∠FAB=60°,2AF=AB ,又AF//BE,.
由(1)知,,
,,
,,
又,則有.
令到平面距離為,有,
故所求線面角.
科目:高中數學 來源: 題型:
【題目】如圖,一個圓錐形量杯的高為厘米,其母線與軸的夾角為.
(1)求該量杯的側面積;
(2)若要在該圓錐形量杯的一條母線上,刻上刻度,表示液面到達這個刻度時,量杯里的液體的體積是多少.當液體體積是立方厘米時,刻度的位置與頂點之間的距離是多少厘米(精確到厘米)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax3+bx2+cx+d在x=1處取極小值,x=3處取極大值,且函數圖象在(2,f(2))處的切線與直線x-5y=0平行.
(1)求實數abc的值;
(2)設函數f(x)=0有三個不相等的實數根,求d的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中實數a為常數.
(I)當a=-l時,確定的單調區(qū)間:
(II)若f(x)在區(qū)間(e為自然對數的底數)上的最大值為-3,求a的值;
(Ⅲ)當a=-1時,證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點投籃一次,以后都在B點投籃;方案乙:始終在B點投籃.每次投籃之間相互獨立.某選手在A點命中的概率為,命中一次記3分,沒有命中得0分;在B點命中的概率為,命中一次記2分,沒有命中得0分,用隨機變量表示該選手一次投籃測試的累計得分,如果的值不低于3分,則認為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3次.
(1)若該選手選擇方案甲,求測試結束后所得分的分布列和數學期望.
(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如今我們的互聯網生活日益豐富,除了可以很方便地網購,網絡外賣也開始成為不少人日常生活中不可或缺的一部分.某市一調查機構針對該市市場占有率最高的甲、乙兩家網絡外賣企業(yè)(以下簡稱外賣甲,外賣乙)的經營情況進行了調查,調查結果如表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外賣甲日接單(百單) | 5 | 2 | 9 | 8 | 11 |
外賣乙日接單(百單) | 2.2 | 2.3 | 10 | 5 | 15 |
(1)據統(tǒng)計表明,與之間具有線性相關關系.
(。┱堄孟嚓P系數加以說明:(若,則可認為與有較強的線性相關關系(值精確到0.001))
(ⅱ)經計算求得與之間的回歸方程為.假定每單外賣業(yè)務企業(yè)平均能獲純利潤3元,試預測當外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍:(值精確到0.01)
(2)試根據表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經營狀況.
相關公式:相關系數,
參考數據:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在地面上同一地點觀測遠方勻速垂直上升的熱氣球,在上午10點整熱氣球的仰角是,到上午10點20分的仰角變成.請利用下表判斷到上午11點整時,熱氣球的仰角最接近哪個度數( )
0.5 | 0.559 | 0.629 | 0.643 | 0.656 | 0.669 | 0.682 | 0.695 | 0.707 | |
0.866 | 0.829 | 0.777 | 0.766 | 0.755 | 0.743 | 0.731 | 0.719 | 0.707 | |
0.577 | 0.675 | 0.810 | 0.839 | 0.869 | 0.900 | 0.933 | 0.966 | 1.0 |
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面內有12個點,其中任意三點不共線,每兩點連一條線段(或邊)。這些線段用紅、藍兩色染色,每條線段恰染一色,其中,從某點出發(fā)的紅色線段有奇數條,而從其余11個點出發(fā)的紅色線段數互不相同。求以已知點為頂點、各邊均為紅色的三角形個數及兩邊為紅色、另一邊為藍色的三角形個數。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com