11.放射性元素一般都有一個半衰期(剩留量為最初質(zhì)量的一半所需的時間).已知一種放射性元素的質(zhì)量按每年10%衰減,那么這種放射性元素的半衰期是( 。┠辏ň_到0.1,已知lg2=0.3010,lg3=0.4771).
A.5.2B.6.6C.7.1D.8.3

分析 設(shè)這種放射性元素的半衰期為n,則(1-10%)n=0.5,取對數(shù)即可得出.

解答 解:設(shè)這種放射性元素的半衰期為n,則(1-10%)n=0.5,即$(\frac{9}{10})^{n}=\frac{1}{2}$,
∴n=$\frac{lg\frac{1}{2}}{lg\frac{9}{10}}$=$\frac{-lg2}{lg9-1}$=$\frac{0.3010}{1-2×0.4771}$=6.6.
故選:B.

點評 本題考查了等比數(shù)列的通項公式、對數(shù)運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)數(shù)列{an}中a2+a4=8,點Pn(n,an)對任意的n∈N*都滿足$\overrightarrow{{P_n}{P_{n+1}}}=(1,2)$,則數(shù)列{an}的前n項和Sn=n2-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{4-{x}^{2}}-2,(-2≤x<0)}\\{|{x}^{2}-x|,(x≤x≤2)}\end{array}\right.$的圖象與x軸及x=±2所圍成的封閉圖形的面積為( 。
A.5-πB.1+πC.π-3D.1-π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}滿足a1=1,a2=$\frac{2}{3}$ 且 $\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n-1}}$=$\frac{2}{{a}_{n}}$(n≥2),則a15等于( 。
A.$\frac{1}{8}$B.$\frac{1}{7}$C.$\frac{1}{3}$D.$\frac{8}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|x2-4x+3>0},B={x|2x-3>0},則A∩B=( 。
A.$(-1,\frac{3}{2})$B.(-3,+∞)C.(3,+∞)D.$(\frac{3}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.《九章算術(shù)》有這樣一個問題:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和為三百九十里,問第六日所走時數(shù)為150里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若x>0,則${x^2}+\frac{3}{2x}$的最小值為(  )
A.1B.$\sqrt{6}$C.$\frac{{3\root{3}{9}}}{4}$D.$\frac{{3\root{3}{36}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點F為拋物線y=-$\frac{1}{8}{({x-4})^2}$的焦點,E為拋物線的頂點,點P是拋物線準(zhǔn)線上一動點,點A在拋物線上,且|AF|=4,則|PA|+|PE|的最小值為( 。
A.6B.$2+4\sqrt{2}$C.$4+2\sqrt{5}$D.$2\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ax2+bx+c(b>a),且f(x)≥0對任意實數(shù)x都成立,若$\frac{f(-2)}{f(2)-f(0)}$取到最小值時,有
(1)當(dāng)a=1,求f(x);
(2)設(shè)g(x)=|f(x)-a|,對任意的x1,x2∈[-3a,-a]都有|g(x1)-g(x2)|≤2a,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案