已知關(guān)于x的方程2x2-x+2m+1=0.

(1)若方程有兩個根,其中一個根在區(qū)間(-1,0)內(nèi),另一個根在區(qū)間(1,2)內(nèi),求實數(shù)m的取值范圍;

(2)若方程的兩個不同的實數(shù)根均在區(qū)間(0,1)內(nèi),求實數(shù)m的取值范圍.

答案:
解析:

  解:令f(x)=2x2-x+2m+1.

  (1)由題意知,函數(shù)f(x)的圖象與x軸的交點橫坐標分別在區(qū)間(-1,0),(1,2)內(nèi),畫出示意圖,得

  

  (2)由題意知,函數(shù)f(x)的圖象與x軸的兩個不同的交點橫坐標均在區(qū)間(0,1)內(nèi),則Δ>0,f(0)>0,f(1)>01-8(2m+1)>0,2m+1>0,2m+2>0<m<-


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:無論m取任何實數(shù)時,方程總有實數(shù)根;
(2)若關(guān)于x的二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱.
①求這個二次函數(shù)的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實數(shù)范圍內(nèi),對于x的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)的條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2均成立.求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程4x-2x+1+3m-1=0有實根,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程ax2+2x+1=0至少有一負根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

研究問題:“已知關(guān)于x的方程ax2-bx+c=0的解集為{1,2},解關(guān)于x的方程cx2-bx+a=0”,有如下解法:
解:由ax2-bx+c=0⇒a-b(
1
x
)+c(
1
x
)2=0
,令y=
1
x
,則y∈{
1
2
, 1}

所以方程cx2-bx+a=0的解集為{
1
2
, 1}

參考上述解法,已知關(guān)于x的方程4x+3•2x+x-91=0的解為x=3,則
關(guān)于x的方程log2(-x)-
1
x2
+
3
x
+91=0
的解為
x=-
1
8
x=-
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•山西模擬)已知關(guān)于x的方程ax2+2x+1=0至少有一負根的必要條件是a≤m,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案