已知x1,x2是方程ax2+bx+c=0的兩根,且滿足1≤x1<x2≤2,a,b,c∈Z,則當正整數(shù)a取得最小值時,b+c=( 。
A、-5B、-4C、-1D、3
考點:函數(shù)的零點與方程根的關(guān)系
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:由于二次方程和二次函數(shù)的關(guān)系,令f(x)=ax2+bx+c,則有判別式大于0,且f(1)≥0,f(2)≥0,對稱軸x=-
b
2a
介于1和2之間,先求得a=1,再求b=-3,再由不等式可得c=2,進而得到b+c=-1.
解答: 解:由于x1,x2是方程ax2+bx+c=0的兩根,且滿足1≤x1<x2≤2,
令f(x)=ax2+bx+c,
b2-4ac>0
a>0
f(1)≥0
f(2)≥0
1<-
b
2a
<2
(a,b,c∈Z),
當正整數(shù)a取得最小值1時,
即有
b2-4c>0
1+b+c≥0
4+2b+c≥0
2<-b<4
(a,b,c∈Z),
則有b=-3,
即有2≤c<
9
4
,c∈Z,
則c=2,
即有b+c=-3+2=-1.
故選C.
點評:本題考查二次方程的實根分布,主要考查二次函數(shù)的圖象和性質(zhì),運用不等式的性質(zhì)是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

沿海地區(qū)某農(nóng)村在2007年底共有人口1480人,全年工農(nóng)業(yè)生產(chǎn)總值為3180萬,從2008年起計劃10年內(nèi)該村的總產(chǎn)值每年增加60萬元,人口每年凈增a人,設(shè)從2008年起的第x年(2008年為第一年)該村人均產(chǎn)值為y萬元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)為使該村的人均產(chǎn)值10年內(nèi)每年都有增長,那么該村每年人口的凈增不能超過多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1A=
6
,M是CC1的中點.
(1)求證:A1B⊥AM;
(2)求二面角B-AM-C的平面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

云南省2014年全省高中男生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(107.5,16).現(xiàn)從我校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于157.5cm和187.5cm之間,將測量結(jié)果按如下方式分成6組:第一組[157.5,162.5],第二組[162.5,167.5],…,第6組[182.5,187.5],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)試評估我校高三年級男生在全省高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(Ⅲ)在這50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,該2人
中身高排名(從高到低)在全省前130名的人數(shù)記為ξ,求ξ的數(shù)學期望.
參考數(shù)據(jù):
若ξ~N(μ,σ2),則P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,
P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,側(cè)面PAD與底面ABCD互相垂直,且所有棱長均為2,AC∩BD=O.
(Ⅰ)若AB⊥AD,過點O作平面α與平面PBC平行,求所得截面的面積;
(Ⅱ)若BD=2,二面角A-PC-B的大小為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

高二年級從參加期末考試的學生中抽出60名學生,并統(tǒng)計了他們的物理成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段[50,60),[60,70)…[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)根據(jù)江蘇省高中學業(yè)水平測試要求,成績低于60分屬于C級,需要補考,求抽取的60名學生中需要補考的學生人數(shù);
(2)年級規(guī)定,本次考試80分及以上為優(yōu)秀,估計這次考試物理學科優(yōu)秀率;
(3)根據(jù)(1),從參加補考的學生中選兩人,求他們成績至少有一個不低于50分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)-f(y)=f(
x-y
1-xy
);當x∈(-1,0)時f(x)>0.若P=f(
1
5
)+f(
1
11
),Q=f(
1
2
),R=f(0);則P,Q,R的大小關(guān)系為(  )
A、P<Q<R
B、R<Q<P
C、R<P<Q
D、Q<P<R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
m
=(1,1-
3
sinA)
n
=(cosA,1),且
m
n
,則A=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
m
x
,則f(1)=2.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案