【題目】把函數(shù)y=sin(x﹣ )的圖象向左平移 個單位長度,再將圖象上所有點的橫坐標縮短為原來的 倍(縱坐標不變)得到函數(shù)f(x)的圖象. (Ⅰ)寫出函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0, ]時,關于x的方程f(x)﹣m=0有兩個不等的實數(shù)根,求實數(shù)m的取值范圍.

【答案】解:(Ⅰ)函數(shù)y=sin(x﹣ )的圖象向左平移 個單位長度,得到y(tǒng)=sin(x﹣ ),再將圖象上所有點的橫坐標縮短為原來的 倍(縱坐標不變)得到函數(shù)f(x)的圖象,∴ (Ⅱ)由f(x)﹣m=0得sin(2x﹣ )=m
令2x﹣ ,由x
方程f(x)﹣m=0有兩個不等實數(shù)根等價于直線y=m與y=sinθ(﹣ )有兩個交點,結(jié)合函數(shù)圖象可知﹣

【解析】(Ⅰ)根據(jù)圖象左右平移和橫向伸縮變換的原則可得到解析式;(Ⅱ)方程f(x)﹣m=0有兩個不等實數(shù)根等價于直線y=m與y=sinθ(﹣ )有兩個交點,結(jié)合函數(shù)圖象可知m范圍.
【考點精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若是兩個相交平面,則在下列命題中,真命題的序號為( )

若直線,則在平面內(nèi)一定不存在與直線平行的直線.

若直線,則在平面內(nèi)一定存在無數(shù)條直線與直線垂直.

若直線,則在平面內(nèi)不一定存在與直線垂直的直線.

若直線,則在平面內(nèi)一定存在與直線垂直的直線.

A. ①③ B. ②③ C. ②④ D. ①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某電子元件進行壽命追蹤調(diào)查,情況如下.

壽命(h)

100~200

200~300

300~400

400~500

500~600

個 數(shù)

20

30

80

40

30


(1)列出頻率分布表;
(2)畫出頻率分布直方圖;
(3)估計元件壽命在100~400h以內(nèi)的在總體中占的比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+blnx在x=1處有極值
(1)求a,b的值;
(2)求函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2x+2 sinxcosx+a,且當 時,f(x)的最小值為2.
(1)求a的值,并求f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的 ,再把所得圖象向右平移 個單位,得到函數(shù)y=g(x),求方程g(x)=2在區(qū)間 上的所有根之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次數(shù)學測驗中,有6位同學的平均成績?yōu)?17分,用表示編號為的同學所得成 績,6位同學成績?nèi)绫恚?/span>

(1)求及這6位同學成績的方差;

(2)從這6位同學中隨機選出2位同學,則恰有1位同學成績在區(qū)間中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷并用定義證明函數(shù)的奇偶性;
(2)判斷并用定義證明函數(shù)在(﹣∞,0)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線與曲線恰好相切于點,求實數(shù)的值;

(2)當時,恒成立,求實數(shù)的取值范圍;

(3)求證:. .

查看答案和解析>>

同步練習冊答案