已知點、,動點,則點的軌跡是 (   )
圓            橢圓   雙曲線     拋物線
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分分)
在平面直角坐標(biāo)系xoy中,已知四邊形OABC是平行四邊形,,點M是OA的中點,點P在線段BC上運動(包括端點),如圖
(Ⅰ)求∠ABC的大;
(II)是否存在實數(shù)λ,使?若存在,求出滿足條件的實數(shù)λ的取值范圍;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)已知點,一動圓過點且與圓內(nèi)切.
(Ⅰ)求動圓圓心的軌跡的方程;
(Ⅱ)設(shè)點,點為曲線上任一點,求點到點距離的最大值;
(Ⅲ)在的條件下,設(shè)△的面積為是坐標(biāo)原點,是曲線上橫坐標(biāo)為的點),以為邊長的正方形的面積為.若正數(shù)滿足,問是否存在最小值,若存在,請求出此最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
求曲線的方程:
(1)求中心在原點,左焦點為,且右頂點為的橢圓方程;
(2)求中心在原點,一個頂點坐標(biāo)為,焦距為10的雙曲線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
已知曲線,若按向量作平移變換得曲線;若將曲線按伸縮系數(shù)向著軸作伸縮變換,再按伸縮系數(shù)3向著軸作伸縮變換得到曲線
(1)求曲線方程;
(2)若上一點,上任意一點,且與曲線相切(為切點),
求線段的最大值及對應(yīng)的點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

..以橢圓中心為頂點,右頂點為焦點的拋物線的標(biāo)準(zhǔn)方程為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分.)
A.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,兩點,間的距離是        
B.(不等式選講選做題)若不等式的解集為         
C.(幾何證明選講選做題)如圖,點是圓上的點, 且,則圓的面積等于      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”,給出下列直線:①y=x+1,②y=x, ③y=2,④y=2x+1,其中為“B型直線”的是        .(填上所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是過圓錐曲線中心的任一條弦,是二次曲線上異于的任一點,且均與坐標(biāo)軸不平行,則對于橢圓,有,類似的,對于雙曲線,有        。

查看答案和解析>>

同步練習(xí)冊答案