(本小題滿分12分)

在平面直角坐標系xOy中,曲線y=x2-2x—3與兩條坐標軸的三個交點都在圓C上.若圓C與直線x-y+a=0交于A,B兩點,

(1)求圓C的方程;zxxk

(2)若,求a的值;

(3)若 OA⊥OB,(O為原點),求a的值.

 

【答案】

(1) (x-1)2+(y+1)2=5. (2);(3) a=-1. 。

【解析】

試題分析:(1)曲線y=x2-2x—3與y軸的交點為(0,-3),與x軸的交點為(-1,0),(3,0).

故可設(shè)圓C的圓心為(1,t),則有12+(t+3)2=(1+1)2+t2,解得t=.

則圓C的半徑為.則以圓C的方程為(x-1)2+(y+1)2=5.

(2) , 圓心C到直線x-y+a=0的距離為

,解得

(3)設(shè)A(x1,y1),B(x2,y2),其坐標滿足方程組:.

消去y,得到方程2x2+2ax+a2+2a-3=0. 由已知可得,判別式Δ=24-16a-4a2>0.

從而x1+x2=-a,x1x2.①

由于OA⊥OB,可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,

所以2x1x2+a(x1+x2)+a2=0.②

由①,②得a=1,,滿足Δ>0,故a=-1.

考點:本題主要考查圓的定義及標準方程,直線與圓的位置關(guān)系。

點評:典型題,關(guān)于圓的考查,往往以這種“連環(huán)題”的形式出現(xiàn),首先求標準方程,往往不難。而涉及在直線與圓的位置關(guān)系,往往要利用韋達定理,實現(xiàn)“整體代換”。本題中利用OA⊥OB,可得x1x2+y1y2=0,從而將兩根之積代入,方便求解。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案