過(guò)點(diǎn)P(1,4)的直線l在兩坐標(biāo)軸上的截距均為正值,當(dāng)兩截距之和最小時(shí),直線l的方程為_(kāi)_____.
設(shè)直線l的解析式為y-4=k(x-1),(k<0),直線l在兩軸上的截距分別為a,b,
則a=1-
4
k
,b=4-k,
因?yàn)閗<0,-k>0,
4
-k
>0.
∴a+b=5+(-k)+
4
-k
≥5+2
(-k)(
4
-k
)
=5+4=9.當(dāng)且僅當(dāng)-k=
4
-k
即k=-2時(shí)a+b取得最小值9.
則所求的直線方程為y-4=-2(x-1),即2x+y-6=0.
故答案為:2x+y-6=0
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)P與直x=4的距離等于它到定點(diǎn)F(1,0)的距離的2倍,
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)點(diǎn)M(1,1)在所求軌跡內(nèi),且過(guò)點(diǎn)M的直線與曲線C交于A、B,當(dāng)M是線段AB中點(diǎn)時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點(diǎn),且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)

        已知橢圓C的中心在的點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個(gè)端點(diǎn),過(guò)F1的直線與橢圓交于A,B兩點(diǎn),的面積為4,的周長(zhǎng)為

   (I)求橢圓C的方程;

   (II)設(shè)點(diǎn)Q的從標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個(gè)圓,使得該圓與直

線PF1,PF2都相切,若存在,求出P點(diǎn)坐標(biāo)及圓的方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年福建省泉州市南安一中高二(上)年期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)P與直x=4的距離等于它到定點(diǎn)F(1,0)的距離的2倍,
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)點(diǎn)M(1,1)在所求軌跡內(nèi),且過(guò)點(diǎn)M的直線與曲線C交于A、B,當(dāng)M是線段AB中點(diǎn)時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案