11.如圖所示的陰影部分是由x軸,直線x=1及曲線y=ex-1圍成,現(xiàn)向矩形區(qū)域OABC內(nèi)隨機投擲一點,則該點落在陰影部分的概率是( 。
A.$\frac{1}{e}$B.$\frac{1}{e-1}$C.$1-\frac{1}{e}$D.$\frac{e-2}{e-1}$

分析 求出陰影部分的面積,以面積為測度,即可得出結(jié)論.

解答 解:由題意,陰影部分的面積為${∫}_{0}^{1}({e}^{x}-1)dx$=$({e}^{x}-x){|}_{0}^{1}$=e-2,
∵矩形區(qū)域OABC的面積為e-1,
∴該點落在陰影部分的概率是$\frac{e-2}{e-1}$.
故選D.

點評 本題考查概率的計算,考查定積分知識的運用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.過點(-1,3)且平行于直線x-2y+3=0的直線方程為x-2y+m=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.半徑為2cm的半圓紙片做成圓錐放在桌面上,它的最高處距離桌面$\sqrt{3}$cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在平面直角坐標系xOy中,雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一條漸近線與直線y=2x+1平行,則實數(shù)a的值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.直線x+(a2+1)y+1=0的傾斜角的取值范圍是( 。
A.[0,$\frac{π}{4}$]B.[0,$\frac{π}{2}$)∪[$\frac{3}{4}$π,π)C.($\frac{π}{2}$,π)D.[$\frac{3}{4}$π,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若x,y滿足約束條件$\left\{\begin{array}{l}3x+y-6≤0\\ x+y≥2\\ y≤2\end{array}\right.$,則x2+y2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列命題中是假命題的是( 。
A.?φ∈R,使函數(shù)f(x)=sin(2x+φ)是偶函數(shù)
B.?α,β∈R,使得cos(α+β)=cosα+cosβ
C.?m∈R,使$f(x)=(m-1)•{x^{{m^2}-4m+3}}$是冪函數(shù),且在(0,+∞)上遞減
D.?a,b∈R+,lg(a+b)≠lga+lgb

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.方程(a2+1)x2-2ax-3=0的兩根x1,x2滿足|x2|<x1(1-x1),且0<x1<1,則實數(shù)a的取值范圍為$a∈(-\frac{3}{2},1-\sqrt{3})∪(1+\sqrt{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知α是銳角,且cos(α+$\frac{π}{5}$)=$\frac{1}{3}$,則cos(2α+$\frac{π}{15}$)=(  )
A.$\frac{4\sqrt{6}-7}{18}$B.$\frac{7-4\sqrt{6}}{18}$C.$\frac{\sqrt{3}+\sqrt{2}}{6}$D.$\frac{\sqrt{3}-\sqrt{2}}{6}$

查看答案和解析>>

同步練習冊答案