分析 (1)利用間接法,即可求解;
(2)由已知得2×$\frac{n}{2}$=1+$\frac{n(n-1)}{8}$,解得n=8,即可求(2x+1)n-3(x${\;}^{2}-\frac{2}{x}+\frac{1}{{x}^{4}}$)展開式中含x2的項(xiàng).
解答 解:(1)若不考慮數(shù)字0是否在首位,有${A}_{2}^{2}$${A}_{3}^{3}$${A}_{4}^{2}$種組成方法,其中0在首位有${A}_{2}^{2}$${A}_{3}^{3}$種組成方法,
∴共有${A}_{2}^{2}$${A}_{3}^{3}$${A}_{4}^{2}$-${A}_{2}^{2}$${A}_{3}^{3}$=132個(gè);
(2)由已知得2×$\frac{n}{2}$=1+$\frac{n(n-1)}{8}$,解得n=8或n=1(舍去),
則(2x+1)n-3(x${\;}^{2}-\frac{2}{x}+\frac{1}{{x}^{4}}$)=(2x+1)8-3(x${\;}^{2}-\frac{2}{x}+\frac{1}{{x}^{4}}$),
∴展開式中含x2的項(xiàng)是[1+${2}^{3}•{C}_{5}^{3}•(-2)$]x2=-159x2.
點(diǎn)評(píng) 本題考查排列知識(shí)的運(yùn)用,考查二項(xiàng)式定理,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 即不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com