求以橢圓+=1的頂點(diǎn)為焦點(diǎn),焦點(diǎn)為頂點(diǎn)的雙曲線方程.
【答案】分析:先求出雙曲線的頂點(diǎn)和焦點(diǎn),從而得到橢圓的焦點(diǎn)和頂點(diǎn),進(jìn)而得到橢圓方程.
解答:解:橢圓+=1的頂點(diǎn)為(0,-2)和(0,2),焦點(diǎn)為(0,-2)和(0,2).
∴雙曲線的焦點(diǎn)坐標(biāo)是(0,-2)和(0,2),頂點(diǎn)為(0,-2)和(0,2).
∴雙曲線方程為
點(diǎn)評(píng):本題考查雙曲線和橢圓的性質(zhì)和應(yīng)用,解題時(shí)要注意區(qū)分雙曲線和橢圓的基本性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求以橢圓+=1的頂點(diǎn)為焦點(diǎn),且一條漸近線的傾斜角為的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求以橢圓=1的頂點(diǎn)為焦點(diǎn),且一條漸近線的傾斜角為的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求以橢圓=1的頂點(diǎn)為焦點(diǎn),且一條漸近線的傾斜角為的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年寧夏銀川一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

求以橢圓+=1的頂點(diǎn)為焦點(diǎn),且一條漸近線的傾斜角為的雙曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案