【題目】設(shè)a>0且a≠1,如果函數(shù)y=a2x+2ax﹣1在[﹣1,1]上的最大值為7,求a的值.

【答案】解:①a>1時,令ax=t,x∈[﹣1,1],則 ,
f(t)=t2+2t﹣1=(t+1)2﹣2在 上單調(diào)遞增,
即a2+2a﹣8=0,解得a=﹣4(舍去)或a=2.
②0<a<1時,令ax=t,x∈[﹣1,1],則
f(t)=t2+2t﹣1=(t+1)2﹣2在 上單調(diào)遞增,

解得 (舍去)或
綜上:a=2或
【解析】由已知中函數(shù)y=a2x+2ax﹣1(a>0,且a≠1)在區(qū)間[﹣1,1]上的最大值是7,我們利用換元法,及二次函數(shù)的性質(zhì),我們易構(gòu)造關(guān)于a的方程,解方程即可得到答案.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的最值及其幾何意義的相關(guān)知識,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓E的左右頂點分別為A、B,左右焦點分別為,,直線交橢圓于C、D兩點,與線段及橢圓短軸分別交于兩點(不重合),.

(Ⅰ)求橢圓E的離心率;

(Ⅱ)若,設(shè)直線的斜率分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生每次投籃的命中概率都為.現(xiàn)采用隨機(jī)模擬的方法求事件的概率:先由計算器產(chǎn)生0到9之間的整數(shù)值隨機(jī)數(shù),制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3個隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生如下20組隨機(jī)數(shù):989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,據(jù)此統(tǒng)計,該學(xué)生三次投籃中恰有一次命中的概率約為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分15如圖,在四棱錐,平面PAD平面ABCD, ,E是BD的中點

求證:EC//平面APD;

求BP與平面ABCD所成角的正切值;

求二面角正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)證明: 時, ;

(Ⅲ)比較三個數(shù): , , 的大。為自然對數(shù)的底數(shù)),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知非空集合A={x|2a+1≤x≤3a﹣5},B={x|3≤x≤22},
(1)當(dāng)a=10時,求A∩B,A∪B;
(2)求能使AB成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計算與求解
(1)計算:2log32﹣log3 +log38﹣5 ;
(2)已知a>0,a≠1,若loga(2x+1)<loga (4x﹣3),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于函數(shù)),

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若在區(qū)間內(nèi)有且只有一個極值點,試求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求曲線在點處的切線方程;

(Ⅱ)若恒成立,求的取值范圍;

(Ⅲ)證明:總存在,使得當(dāng),恒有.

查看答案和解析>>

同步練習(xí)冊答案