【題目】已知曲線(xiàn)參數(shù)方程為為參數(shù)),當(dāng)時(shí),曲線(xiàn)上對(duì)應(yīng)的點(diǎn)為.以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)曲線(xiàn)的公共點(diǎn)為,求的值.

【答案】(1)見(jiàn)解析;(2).

【解析】分析:(1)消去參數(shù)t得到曲線(xiàn)的普通方程,根據(jù)二倍角公式及得到曲線(xiàn)的直角坐標(biāo)方程;(2)由已知求出曲線(xiàn)的參數(shù)方程,利用韋達(dá)定理求解即可。

詳解:(1)因?yàn)榍(xiàn)的參數(shù)方程為為參數(shù)),

所以曲線(xiàn)的普通方程為,

又曲線(xiàn)的極坐標(biāo)方程為,

所以曲線(xiàn)的直角坐標(biāo)方程為

(2)當(dāng)時(shí),,所以點(diǎn),

由(1)知曲線(xiàn)是經(jīng)過(guò)點(diǎn)的直線(xiàn),設(shè)它的傾斜角為,則,

所以,

所以曲線(xiàn)的參數(shù)方程為為參數(shù)),

將上式代入,得,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左右焦點(diǎn)分別為 ,左頂點(diǎn)為,上頂點(diǎn)為, 的面積為.

(1)求橢圓的方程;

(2)設(shè)直線(xiàn) 與橢圓相交于不同的兩點(diǎn), , 是線(xiàn)段的中點(diǎn).若經(jīng)過(guò)點(diǎn)的直線(xiàn)與直線(xiàn)垂直于點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下表為“五點(diǎn)法”繪制函數(shù)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中).

0

2

0

0

(Ⅰ) 請(qǐng)寫(xiě)出函數(shù)的最小正周期和解析式;

(Ⅱ) 求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅲ) 求函數(shù)在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù))是定義域?yàn)镽的奇函數(shù)

)求t的值;

)若函數(shù)的圖象過(guò)點(diǎn),是否存在正數(shù)m,使函數(shù)上的最大值為0,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,據(jù)統(tǒng)計(jì),某公司名員工中的人使用微信,其中每天使用微信時(shí)間在一小時(shí)以?xún)?nèi)的有人,其余每天使用微信在一小時(shí)以上.若將員工年齡分成青年(年齡小于歲)和中年(年齡不小于歲)兩個(gè)階段,使用微信的人中是青年人.若規(guī)定:每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中是青年人.

)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;


青年人

中年人

合計(jì)

經(jīng)常使用微信




不經(jīng)常使用微信




合計(jì)




)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認(rèn)為經(jīng)常使用微信與年齡有關(guān)?

)采用分層抽樣的方法從經(jīng)常使用微信的人中抽取人,從這人中任選人,求事件 選出的人均是青年人的概率.

附:







查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,,若, ,使得直線(xiàn)的斜率為,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線(xiàn)段CB上一點(diǎn),連接AC、AE分別交⊙O于D、G兩點(diǎn),連接DG交CB于點(diǎn)F. (Ⅰ)求證:C、D、G、E四點(diǎn)共圓.
(Ⅱ)若F為EB的三等分點(diǎn)且靠近E,EG=1,GA=3,求線(xiàn)段CE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義“正對(duì)數(shù)”:,則下列結(jié)論中正確的是( )

A. B.

C. D.

E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求處的切線(xiàn)方程;

2)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案