【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實(shí)數(shù)λ的值.
【答案】
(1)
解: , ,
∵ ,
∴cosx≥0,
∴ .
(2)
解:f(x)=cos2x﹣4λcosx=2(cosx﹣λ)2﹣1﹣2λ2,
∵ ,
∴0≤cosx≤1,
①當(dāng)λ<0時(shí),當(dāng)且僅當(dāng)cosx=0時(shí),f(x)取得最小值﹣1,這與已知矛盾;
②當(dāng)0≤λ≤1,當(dāng)且僅當(dāng)cosx=λ時(shí),f(x)取得最小值﹣1﹣2λ2,
由已知得 ,解得 ;
③當(dāng)λ>1時(shí),當(dāng)且僅當(dāng)cosx=1時(shí),f(x)取得最小值1﹣4λ,
由已知得 ,解得 ,這與λ>1相矛盾、
綜上所述, 為所求.
【解析】(1)根據(jù)所給的向量的坐標(biāo),寫出兩個(gè)向量的數(shù)量積,寫出數(shù)量積的表示式,利用三角函數(shù)變換,把數(shù)量積整理成最簡形式,再求兩個(gè)向量和的模長,根據(jù)角的范圍,寫出兩個(gè)向量的模長.(2)根據(jù)第一問做出的結(jié)果,寫出函數(shù)的表達(dá)式,式子中帶有字母系數(shù)λ,把式子整理成關(guān)于cosx的二次函數(shù)形式,結(jié)合λ的取值范圍,寫出函數(shù)式的最小值,是它的最小值等于已知量,得到λ的值,把不合題意的舍去.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角函數(shù)的最值(函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列,定義, .
(1) 若,是否存在,使得?請說明理由;
(2) 若, ,求數(shù)列的通項(xiàng)公式;
(3) 令,求證:“為等差數(shù)列”的充要條件是“的前4項(xiàng)為等差數(shù)列,且為等差數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到曲線
(1)求出的普通方程;
(2)設(shè)直線: 與的交點(diǎn)為, ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅲ)設(shè)斜率為的直線與函數(shù)的圖象交于, 兩點(diǎn),其中,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點(diǎn),直線和曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,且過點(diǎn)(1,).
(I)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:x2+y2=相切的直線l交橢圓C與A,B兩點(diǎn),求△OAB面積的最大值,及取得最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)(x﹣2,x﹣y)
(1)在一個(gè)盒子中,放有標(biāo)號(hào)為1,2,3的三張卡片,現(xiàn)從此盒中有放回地先后抽到兩張卡片的標(biāo)號(hào)分別記為x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用計(jì)算機(jī)隨機(jī)在[0,3]上先后取兩個(gè)數(shù)分別記為x,y,求P點(diǎn)在第一象限的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com