【題目】已知函數f(x)=lnx,其中a>0.曲線y=f(x)在點(1,f(1))處的切線與直線y=x+1垂直.
(1)求函數f(x)的單調區(qū)間;
(2)求函數f(x)在區(qū)間[1,e]上的極值和最值.
【答案】(1)f(x)的單調減區(qū)間為(0,2),增區(qū)間為[2,+∞);(2)f(x)的極小值為f(2)=ln2,無極大值;最小值ln2,最大值1.
【解析】
(1)先求導,由曲線在點處的切線與直線垂直可得,即可解得,再分別令和,即可求解;
(2)由(1)可知f(x)的極小值為f(2),無極大值,再將極值與端點值比較求得最值即可.
(1)由題,(x>0),
因為曲線在點處的切線與直線垂直,
所以,解得a=2,
所以,
令得0<x<2,令得x>2,
所以f(x)的單調減區(qū)間為(0,2),增區(qū)間為[2,+∞)
(2)由(1)可得f(x)在(1,2)上遞減,在(2,e)上遞增,
故f(x)的極小值為f(2)=ln2,無極大值;
又因為f(1)=1,f(e),f(2)=ln2,
所以f(x)的最小值為ln2,最大值為1.
科目:高中數學 來源: 題型:
【題目】一次循環(huán)賽中有2n+1支參賽隊,其中每隊與其他隊均只進行一場比賽,且比賽結果中沒有平局。若三支參賽隊A、B、C滿足:A擊敗B,B擊敗C,C擊敗A,則稱它們形成一個“環(huán)形三元組”。求:
(1)環(huán)形三元組的最小可能數目;
(2)環(huán)形三元組的最大可能數目。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,點在橢圓上,且滿足.
(1)求橢圓的方程;
(2)設傾斜角為的直線與交于,兩點,記的面積為,求取最大值時直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=4x與橢圓E:1(a>b>0)有一個公共焦點F.設拋物線C與橢圓E在第一象限的交點為M.滿足|MF|.
(1)求橢圓E的標準方程;
(2)過點P(1,)的直線交拋物線C于A、B兩點,直線PO交橢圓E于另一點Q.若P為AB的中點,求△QAB的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著人們生活水平的提高,越來越多的人愿意花更高的價格購買手機.某機構為了解市民使用手機的價格情況,隨機選取了100人進行調查,并將這100人使用的手機價格按照,,…,分成6組,制成如圖所示的頻率分布直方圖:
(1)求圖中的值;
(2)求這組數據的平均數和中位數(同一組中的數據用該組區(qū)間的中間值作代表);
(3)利用分層抽樣從手機價格在和的人中抽取5人,并從這5人中抽取2人進行訪談,求抽取出的2人的手機價格在不同區(qū)間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關部門隨機抽取了某大學的名學生進行問卷調查,并把所得數據列成如下所示的頻數分布表:
組別 | |||||
頻數 |
(Ⅰ)求所得樣本的中位數(精確到百元);
(Ⅱ)根據樣本數據,可近似地認為學生的旅游費用支出服從正態(tài)分布,若該所大學共有學生人,試估計有多少位同學旅游費用支出在元以上;
(Ⅲ)已知樣本數據中旅游費用支出在范圍內的名學生中有名女生, 名男生,現(xiàn)想選其中名學生回訪,記選出的男生人數為,求的分布列與數學期望.
附:若,則,
, .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com