“k=2”是“直線x-y+k=0與圓x2+y2=2相切”的 ( �。�
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件
直線x-y+k=0與圓x2+y2=2相切?圓心到直線的距離等于半徑,得到
|k|
2
=
2
,解出k=±2.
若k=2成立,則直線x-y+k=0與圓x2+y2=2相切成立;反之,若直線x-y+k=0與圓x2+y2=2相切成立,推不出k=2成立.
故“k=2”是“直線x-y+k=0與圓x2+y2=2相切”的充分不必要條件.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:kx+y-k+2=0和兩點(diǎn)A(3,0),B(0,1),下列命題正確的是
 
(填上所有正確命題的序號(hào)).
①直線l對(duì)任意實(shí)數(shù)k恒過(guò)點(diǎn)P(1,-2);
②方程kx+y-k+2=0可以表示所有過(guò)點(diǎn)P(1,-2)的直線;
③當(dāng)k=±1及k=2時(shí)直線l在坐標(biāo)軸上的截距相等;
④若
x03
+y0=1
,則直線(x0-1)(y+2)=(y0+2)(x-1)與直線AB及直線l都有公共點(diǎn);
⑤使得直線l與線段AB有公共點(diǎn)的k的范圍是[-3,1];
⑥使得直線l與線段AB有公共點(diǎn)的k的范圍是(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)“k=
2
”是“直線x-y+k=0與圓“x2+y2=1相切”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“k=2”是“直線x-y+k=0與圓x2+y2=2相切”的 ( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年安徽師大附中高考數(shù)學(xué)七模試卷(文科)(解析版) 題型:選擇題

“k=2”是“直線x-y+k=0與圓x2+y2=2相切”的 ( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�