科目: 來源: 題型:
【題目】綜合與實踐
問題情境:在數(shù)學(xué)活動課上,老師出示了這樣一個問題:如圖1,在矩形ABCD中,AD=2AB,E是AB延長線上一點,且BE=AB,連接DE,交BC于點M,以DE為一邊在DE的左下方作正方形DEFG,連接AM.試判斷線段AM與DE的位置關(guān)系.
探究展示:勤奮小組發(fā)現(xiàn),AM垂直平分DE,并展示了如下的證明方法:
證明:∵BE=AB,∴AE=2AB.
∵AD=2AB,∴AD=AE.
∵四邊形ABCD是矩形,∴AD∥BC.
∴.(依據(jù)1)
∵BE=AB,∴.∴EM=DM.
即AM是△ADE的DE邊上的中線,
又∵AD=AE,∴AM⊥DE.(依據(jù)2)
∴AM垂直平分DE.
反思交流:
(1)①上述證明過程中的“依據(jù)1”“依據(jù)2”分別是指什么?
②試判斷圖1中的點A是否在線段GF的垂直平分線上,請直接回答,不必證明;
(2)創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)進行探究,如圖2,連接CE,以CE為一邊在CE的左下方作正方形CEFG,發(fā)現(xiàn)點G在線段BC的垂直平分線上,請你給出證明;
探索發(fā)現(xiàn):
(3)如圖3,連接CE,以CE為一邊在CE的右上方作正方形CEFG,可以發(fā)現(xiàn)點C,點B都在線段AE的垂直平分線上,除此之外,請觀察矩形ABCD和正方形CEFG的頂點與邊,你還能發(fā)現(xiàn)哪個頂點在哪條邊的垂直平分線上,請寫出一個你發(fā)現(xiàn)的結(jié)論,并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】某區(qū)域平面示意圖如圖,點O在河的一側(cè),AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點O位于北偏東45°,乙勘測員在B處測得點O位于南偏西73.7°,測得AC=840m,BC=500m.請求出點O到BC的距離.參考數(shù)據(jù):sin73.7°≈,cos73.7°≈,tan73.7°≈
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC為直徑作⊙O交AB于點D.
(1)求線段AD的長度;
(2)點E是線段AC上的一點,試問:當(dāng)點E在什么位置時,直線ED與⊙O相切?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)(k>0)的圖像交于A,B兩點,過點A做x軸的垂線,垂足為M,△AOM面積為1.
(1)求反比例函數(shù)的解析式;
(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)工會開展“一周工作量完成情況”調(diào)查活動,隨機調(diào)查了部分員工一周的工作量剩余情況,并將調(diào)查結(jié)果統(tǒng)計后繪制成如圖 1 和圖 2 所示的不完整統(tǒng)計圖 .
(1) 被調(diào)查員工的人數(shù)為 人:
(2) 把條形統(tǒng)計圖補充完整;
(3) 若該企業(yè)有員工 10000 人,請估計該企業(yè)某周的工作量完成情況為“剩少量”的員工有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,熒光屏上的甲、乙兩個光斑(可看作點)分別從相距8cm的A,B兩點同時開始沿線段AB運動,運動工程中甲光斑與點A的距離S1(cm)與時間t(s)的函數(shù)關(guān)系圖象如圖2,乙光斑與點B的距離S2(cm)與時間t(s)的函數(shù)關(guān)系圖象如圖3,已知甲光斑全程的平均速度為1.5cm/s,且兩圖象中△P1O1Q1≌P2Q2O2,下列敘述正確的是( 。
A. 甲光斑從點A到點B的運動速度是從點B到點A的運動速度的4倍
B. 乙光斑從點A到B的運動速度小于1.5cm/s
C. 甲乙兩光斑全程的平均速度一樣
D. 甲乙兩光斑在運動過程中共相遇3次
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:拋物線y=ax2﹣3ax+4與x軸交于A、B兩點(點A在點B的左側(cè)),且AB=5.
(1)如圖1,求拋物線的解析式;
(2)如圖2,拋物線與y軸交于點C,F是第四象限拋物線上一點,FD⊥x軸,垂足為D,E是FD延長線上一點,ER⊥y軸,垂足為R,FA交y軸于點Q,若BC∥RD.求證:OQ=CR;
(3)在(2)的條件下,在RD上取一點M,延長OM交線段DE于點N,RE交拋物線于點T(點T在拋物線對稱軸的右側(cè)),連接MT、NT,且TM⊥OM,=,H是AF上一點,當(dāng)∠DHF=135°時,求點H的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】四邊形ABCD內(nèi)接于⊙O,連接AC、BD,2∠BDC+∠ADB=180°.
(1)如圖1,求證:AC=BC;
(2)如圖2,E為⊙O上一點, =,F為AC上一點,DE與BF相交于點T,連接AT,若∠BFC=∠BDC+∠ABD,求證:AT平分∠DAB;
(3)在(2)的條件下,DT=TE,AD=8,BD=12,求DE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】一項工程,甲隊單獨完成比乙隊單獨完成少用8天,甲隊單獨做3天的工作乙隊單獨做需要5天.
(1)甲、乙兩隊單獨完成此項工程各需幾天?
(2)甲隊每施工一天則需付給甲隊工程款5.5萬元,乙隊每施工一天則需付給乙隊工程款3萬元.該工程先由甲、乙兩隊合作若干天后,再由乙隊完成剩下的工程.若要求完成此項工程的工程款不超過65萬元,則甲、乙兩隊最多合作多少天?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com