科目: 來源: 題型:
【題目】如圖1,點A、B在直線MN上(A在B的左側(cè)),點P是直線MN上方一點.若∠PAN=x°,∠PBN=y°,記< x,y >為P的雙角坐標.例如,若△PAB是等邊三角形,則點P的雙角坐標為< 60,120 >.
(1)如圖2,若AB=22 cm,P<26.6,58>,求△PAB的面積;
(參考數(shù)據(jù):tan26.6°≈0.50,tan58°≈1.60.)
(2)在圖3中用直尺和圓規(guī)作出點P < x,y >,其中y=2x且y=x+30.(保留作圖痕跡)
查看答案和解析>>
科目: 來源: 題型:
【題目】甲盒中有標號為1、2、4的牌子,乙盒中有標號為1、2、3、4的牌子,兩個盒子均不透明,這些牌子除標號外無其他差別.小勇從甲盒中隨機摸出一個牌子,標號為a,小婷從乙盒中隨機摸出一個牌子,標號為b,若a<b,則小勇獲勝;若a≥b,則小婷獲勝.
(1)求小勇獲勝的概率;
(2)若小勇摸出的牌子標號為2,在不知道小婷標號的情況下,他獲勝的概率是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】某籃球隊員在籃球聯(lián)賽中分別與甲隊、乙隊對陣各四場,下表是他的技術(shù)統(tǒng)計.
場次 | 對陣甲隊 | 對陣乙隊 | ||
得分(分) | 失誤(次) | 得分(分) | 失誤(次) | |
第一場 | 25 | 2 | 27 | 3 |
第二場 | 30 | 0 | 31 | 1 |
第三場 | 27 | 3 | 20 | 2 |
第四場 | 26 | 2 | 26 | 4 |
(1)他在對陣甲隊和乙隊的各四場比賽中,平均每場得分分別是多少?
(2)利用方差判斷他在對陣哪個隊時得分比較穩(wěn)定;
(3)根據(jù)上表提供的信息,判斷他在對陣哪個隊時總體發(fā)揮較好,簡要說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,D、E分別是邊AB、AC的中點,點F是BC上一點,∠B=∠DEF.
(1)求證:四邊形BDEF是平行四邊形;
(2)直接寫出當△ABC滿足什么條件時,四邊形BDEF是菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是一張直角三角形卡片,∠ACB=90°,AC=BC,點D、E分別在邊AB、AC上,AD=2 cm,DB=4 cm,DE⊥AB.若將該卡片繞直線DE旋轉(zhuǎn)一周,則形成的幾何體的表面積為___cm2.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠BAC=45°,∠ABC=60°,AB=4,D是邊BC上的一個動點,以AD為直徑畫⊙O分別交AB、AC于點E、F,則弦EF長度的最小值為( )
A.B.C.2D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點P由B出發(fā)沿BA方向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接PQ,設(shè)運動的時間為t(單位:s)(0≤t≤4).解答下列問題:
(1)當t為何值時,PQ∥BC.
(2)設(shè)△AQP面積為S(單位:cm2),當t為何值時,S取得最大值,并求出最大值.
(3)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時t的值;若不存在,請說明理由.
(4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t,使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
(1)求證:AD=BD;
(2)求證:DF是⊙O的切線
(3)若⊙O直徑為18,,求DE的長
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點,與y軸交于點C.
(1)求這個二次函數(shù)的關(guān)系解析式;
(2)求直線AC的函數(shù)解析式;
(3)點P是直線AC上方的拋物線上一動點,是否存在點P,使△ACP的面積最大?若存在,求出點P的坐標;若不存在,說明理由;
查看答案和解析>>
科目: 來源: 題型:
【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com