科目: 來源: 題型:
【題目】如圖已知:AB是圓O的直徑,AB=10,點C為圓O上異于點A、B的一點,點M為弦BC的中點.
(1)如果AM交OC于點E,求OE:CE的值;
(2)如果AM⊥OC于點E,求∠ABC的正弦值;
(3)如果AB:BC=5:4,D為BC上一動點,過D作DF⊥OC,交OC于點H,與射線BO交于圓內(nèi)點F,請完成下列探究.
探究一:設(shè)BD=x,FO=y,求y關(guān)于x的函數(shù)解析式及其定義域.
探究二:如果點D在以O為圓心,OF為半徑的圓上,寫出此時BD的長度.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知對稱軸為直線的拋物線與軸交于、兩點,與軸交于C點,其中.
(1)求點B的坐標及此拋物線的表達式;
(2)點D為y軸上一點,若直線BD和直線BC的夾角為15,求線段CD的長度;
(3)設(shè)點為拋物線的對稱軸上的一個動點,當為直角三角形時,求點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,聯(lián)結(jié)AP并延長AP交CD于F點,
(1)求證:四邊形AECF為平行四邊形;
(2)如果PA=PC,聯(lián)結(jié)BP,求證:△APB△EPC.
查看答案和解析>>
科目: 來源: 題型:
【題目】某乒乓球館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:①金卡售價600元/張,每次憑卡不再收費;②銀卡售價150元/張,每次憑卡另收10元;暑期普通票正常出售,兩種優(yōu)惠卡僅限暑期使用,不限次數(shù).設(shè)打乒乓x次時,所需總費用為y元.
(1)分別寫出選擇銀卡、普通票消費時,y與x之間的函數(shù)關(guān)系式;
(2)在同一個坐標系中,若三種消費方式對應(yīng)的函數(shù)圖像如圖所示,請根據(jù)函數(shù)圖像,寫出選擇哪種消費方式更合算.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點的坐標為,動點從點出發(fā),沿軸以每秒個單位的速度向上移動,且過點的直線也隨之移動,如果點關(guān)于的對稱點落在坐標軸上,沒點的移動時間為,那么的值可以是___.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC,BD交于O,EF過點O與AD,BC分別交于E,F,若AB=4,BC=5,OE=1.5,則四邊形EFCD的周長_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解全區(qū)5000名初中畢業(yè)生的體重情況,隨機抽測了200名學(xué)生的體重,頻率分布如圖所示(每小組數(shù)據(jù)可含最小值,不含最大值),其中從左至右前四個小長方形的高依次為0.02、0.03、0.04、0.05,由此可估計全區(qū)初中畢業(yè)生的體重不小于60千克的學(xué)生人數(shù)約為___人.
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于x的方程(2m+1)x2+4mx+2m﹣3=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)之和等于﹣1?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,△ABC為等邊三角形,點D為直線BC上一動點(點D不與B、C重合).以
AD為邊作菱形ADEF,使∠DAF=60°,連接CF.
⑴如圖1,當點D在邊BC上時,
求證:∠ADB=∠AFC;②請直接判斷結(jié)論∠AFC=∠ACB+∠DAC是否成立;
⑵如圖2,當點D在邊BC的延長線上時,其他條件不變,結(jié)論∠AFC=∠ACB+∠DAC是否成立?請寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關(guān)系,并寫出證明過程;
⑶如圖3,當點D在邊CB的延長線上時,且點A、F分別在直線BC的異側(cè),其他條件不變,請補全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關(guān)系.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=ax2+bx+3與y軸的交點為A,點A與點B關(guān)于拋物線的對稱軸對稱,二次函數(shù)y=ax2+bx+3的y與x的部分對應(yīng)值如下表:
x | … | ﹣1 | 0 | 1 | 3 | 4 | … |
y | … | 8 | 0 | 0 | … |
(1)拋物線的對稱軸是 _________ .點A( ______, ____),B( _____, _____);
(2)求二次函數(shù)y=ax2+bx+3的解析式;
(3)已知點M(m,n)在拋物線y=ax2+bx+3上,設(shè)△BAM的面積為S,求S與m的函數(shù)關(guān)系式、畫出函數(shù)圖象.并利用函數(shù)圖象說明S是否存在最大值,為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com