科目: 來源: 題型:
【題目】有4張正面分別標(biāo)有數(shù)字的不透明卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將卡片上的數(shù)字記為,另有一個被均勻分成4份的轉(zhuǎn)盤,上面分別標(biāo)有數(shù)字,轉(zhuǎn)動轉(zhuǎn)盤,指針?biāo)傅臄?shù)字記為(若指針指在分割線上則重新轉(zhuǎn)一次),則點落在拋物線與軸所圍成的區(qū)域內(nèi)(不含邊界)的概率是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】操作:將一把三角尺放在邊長為1的正方形上,并使它的直角頂點在對角線上滑動,直角的一邊始終經(jīng)過點,另一邊與射線相交于點.
探究:設(shè),兩點間的距離為.
(1)點在邊上時,線段與線段之間有怎樣的大小關(guān)系?試證明你觀察得到的結(jié)論(如圖1);
(2)點在邊上時設(shè)四邊形的面積為,求與之間的函數(shù)解析式,并寫出自變量的取值范圍(如圖2);
(3)點在線段上滑動時,是否可能成為等腰三角形?如果可能,指出所有能使成為等腰三角形的點的位置,并直接寫出相應(yīng)的的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實驗用,圖5和圖6備用).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個實數(shù)根,求m的最小整數(shù)值;
(2)若方程的兩個實數(shù)根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知線段a=0.3m,b=60cm,c=12dm.
(1)求線段a與線段b的比.
(2)如果線段a、b、c、d成比例,求線段d的長.
(3)b是a和c的比例中項嗎?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】用指定的方法解下列一元二次方程:
(1)x2﹣2x﹣2=0(公式法);
(2)2(x﹣3)=3x(x﹣3)(因式分解法);
(3)2x2﹣4x+1=0(配方法)
查看答案和解析>>
科目: 來源: 題型:
【題目】我們在解決數(shù)學(xué)問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,即把待解決的問題,通過轉(zhuǎn)化歸結(jié)到一類已解決或比較容易解決的問題.
譬如,求解一元二次方程,通常把它轉(zhuǎn)化為兩個一元一次方程來解;求解分式方程,通常把它轉(zhuǎn)化為整式方程來解,只是因為分式方程“去分母”時可能產(chǎn)生增根,所以解分式方程必須檢驗.
請你運用上述把“未知”轉(zhuǎn)化為“已知”的數(shù)學(xué)思想,解決下列問題.
(1)解方程:x3+x2﹣2x=0;
(2)解方程:=x;
(3)如圖,已知矩形草坪 ABCD 的長 AD=8m,寬 AB=3m,小華把一根長為10m 的繩子的一端固定在點 B,沿草坪邊沿 BA、AD 走到點 P 處,把長繩 PB 段拉直并固定在點 P,然后沿草坪邊沿 PD、DC 走到點 C 處,把長繩剩下的一段拉直,長繩的另一端恰好落在點 C.求 AP 的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、c是Rt△ABC和Rt△BED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
寫出一個“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是,求△ABC面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為( 。
A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32
C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com