科目: 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,E為邊BC上的點,且AB=AE,D為線段BE的中點,過點E作EF⊥AE,過點A作AF∥BC,且AF、EF相交于點F.
(1)求證:∠C=∠BAD;
(2)求證:AC=EF.
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).
(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系,標(biāo)注原點以及x軸、y軸;
(2)作出△ABC關(guān)于y軸對稱的△A′B′C′,并寫出點B′的坐標(biāo);
(3)點P是x軸上的動點,在圖中找出使△A′BP周長最小時的點P,直接寫出點P的坐標(biāo)是: .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點,與軸交于點,過點作軸,交拋物線于點,并過點作軸,垂足為.拋物線和反比例函數(shù)的圖象都經(jīng)過點,四邊形的面積是.
求反比例函數(shù)、二次函數(shù)的解析式及拋物線的對稱軸;
如圖,點從點出發(fā)以每秒個單位的速度沿線段向點運動,點從點出發(fā)以相同的速度沿線段img src="http://thumb.1010pic.com/questionBank/Upload/2019/05/12/08/1a8f9afd/SYS201905120854095644903087_ST/SYS201905120854095644903087_ST.023.png" width="24" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />向點運動,其中一個動點到達(dá)端點時,另一個也隨之停止運動.設(shè)運動時間為秒.
①當(dāng)為何值時,四邊形為等腰梯形;
②設(shè)與對稱軸的交點為,過點作軸的平行線交于點,設(shè)四邊形的面積為,求面積關(guān)于時間的函數(shù)解析式,并指出的取值范圍;當(dāng)為何值時,有最大值或最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點,及原點,頂點為.
(1)求拋物線的解析式:
(2)試判斷的形式,并說明理由:
(3)是拋物線上第二象限內(nèi)的動點,過點作軸,垂足為,是否存在點使得以點、、為頂點的三角形與相似?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,,,,四點在反比例函數(shù)的圖象上,線段,都過原點,點的坐標(biāo)為,點點縱坐標(biāo)為,連接,,,.
求該反比例函數(shù)的解析式;
當(dāng)時,寫出的取值范圍;
求四邊形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線經(jīng)過點,,與雙曲線在第二象限內(nèi)交于點,且的面積為.
求直線的解析式及的值;
試探究:在軸上是否存在點,使為直角三角形?若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線與軸負(fù)半軸交于點,與軸交于點,(點在點的右側(cè)),點是拋物線上對稱軸上的一動點,且的面積為.
(1)求的值;
(2)的面積為,直接寫出點坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù),則該函數(shù)圖象的開口________(填“向上”或“向下”);若點在該二次函數(shù)的圖象上,則點在第二象限內(nèi)為________(填“隨機”“必然”或“不可能”)事件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com