科目: 來源: 題型:
【題目】如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點,則下列結(jié)論正確的有_____.
①MN=BM+DN
②△CMN的周長等于正方形ABCD的邊長的兩倍;
③EF2=BE2+DF2;
④點A到MN的距離等于正方形的邊長
⑤△AEN、△AFM都為等腰直角三角形.
⑥S△AMN=2S△AEF
⑦S正方形ABCD:S△AMN=2AB:MN
⑧設(shè)AB=a,MN=b,則≥2﹣2.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結(jié)論:①3a+b<0;②-1≤a≤-;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,的半徑均為.
請在圖①中畫出弦,,使圖①為軸對稱圖形而不是中心對稱圖形;請在圖②中畫出弦,,使圖②仍為中心對稱圖形;
如圖③,在中,,且與交于點,夾角為銳角.求四邊形的面積(用含,的式子表示);
若線段,是的兩條弦,且,你認為在以點,,,為頂點的四邊形中,是否存在面積最大的四邊形?請利用圖④說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料:
如圖,把沿直線平行移動線段的長度,可以變到的位置;
如圖,以為軸,把翻折,可以變到的位置;
如圖,以點為中心,把旋轉(zhuǎn),可以變到的位置.
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
回答下列問題:
①在圖中,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;
②指圖中線段與之間的關(guān)系,為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形和,.
畫出矩形繞點逆時針旋轉(zhuǎn)后的矩形,并寫出的坐標為________,點運動到點所經(jīng)過的路徑的長為________;
若點的坐標為,則點的坐標為________,請畫一條直線平分矩形與組成圖形的面積(保留必要的畫圖痕跡).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知坐標原點為,點,將繞原點順時針旋轉(zhuǎn)后,的對應點的坐標是( )
A. (2,-1) B. (-2,1) C. (1,-2) D. (-1,2)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的弦,D為半徑OA的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且BC是⊙O的切線.
(1)求證:CE=CB;
(2)連接AF,BF,求∠ABF的正弦值;
(3)如果CD=15,BE=10,sinA=,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點O為平面直角坐標系的原點,點A在x軸上,△AOC是邊長為2的等邊三角形.
(1)寫出△AOC的頂點C的坐標:_____.
(2)將△AOC沿x軸向右平移得到△OBD,則平移的距離是_____
(3)將△AOC繞原點O順時針旋轉(zhuǎn)得到△OBD,則旋轉(zhuǎn)角可以是_____度
(4)連接AD,交OC于點E,求∠AEO的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com