科目: 來源: 題型:
【題目】如圖,在一個內(nèi)角為60°的菱形 ABCD中,AB=2,點P以每秒1cm的速度從點A出發(fā),沿AD→DC的路徑運動,到點C停止,過點P 作PQ⊥BD,PQ 與邊AD(或邊CD)交于點Q,△ABQ的面積y(cm2)與點P 的運動時間x(秒)的函數(shù)圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等邊△ABC,點D和點B關(guān)于直線AC軸對稱.點M(不同于點A和點C)在射線CA上,線段DM的垂直平分線交直線BC的于N,
(1)如圖,過點D作DE⊥BC,交BC的延長線于E,若CE=5,求BC的長;
(2)如圖,若點M在線段AC上,求證:△DMN為等邊三角形;
(3)連接CD,BM,若,直接寫出 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,為了改造小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻的最大可使用長度13 m)的空地上建造一個矩形綠化帶.除靠墻一邊(AD)外,用長為36 m的柵欄圍成矩形ABCD,中間隔有一道柵欄(EF).設(shè)綠化帶寬AB為x m,面積為S m2
(1) 求S與x的函數(shù)關(guān)系式,并求出x的取值范圍
(2) 綠化帶的面積能達(dá)到108 m2嗎?若能,請求出AB的長度;若不能,請說明理由
(3) 當(dāng)x為何值時,滿足條件的綠化帶面積最大
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,,,線段經(jīng)過平移得到線段,其中點的對應(yīng)點為點,點D在第一象限,直線AC交軸于點
(1)點D坐標(biāo)為
(2)線段由線段經(jīng)過怎樣平移得到?
(3)求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個涵洞成拋物線形,它的截面如圖,現(xiàn)測得:當(dāng)水面寬AB=1.6 m時,涵洞頂點與水面的距離為2.4 m,離開水面1.5 m處是涵洞寬ED.
(1)求拋物線的解析式;
(2)求ED的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列關(guān)于一次函數(shù) y=-x+2 的圖象性質(zhì)的說法中,不正確的是( )
A.直線與 x 軸交點的坐標(biāo)是(0,2)B.直線經(jīng)過第一、二、四象限
C.y 隨 x 的增大而減小D.與坐標(biāo)軸圍成的三角形面積為 2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線AB和CD相交于點O,OE把∠AOC分成兩部分,且∠AOE∶∠EOC=2∶5
(1)如圖,若∠BOD=70°,求∠BOE
(2)如圖,若OF平分∠BOE,∠BOF=∠AOC+10°,求∠EOF
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三角形ABC的三個頂點的坐標(biāo)分別是A(0,3),B(0,1),C(2,1).若將三角形ABC向左平移3個單位長度,再向下平移1個單位長度得到三角形A′B′C′.
(1)寫出三角形A′B′C′各頂點的坐標(biāo);
(2)畫出三角形ABC和三角形A′B′C′;
(3)求出三角形A′B′C′的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com