相關(guān)習(xí)題
 0  353389  353397  353403  353407  353413  353415  353419  353425  353427  353433  353439  353443  353445  353449  353455  353457  353463  353467  353469  353473  353475  353479  353481  353483  353484  353485  353487  353488  353489  353491  353493  353497  353499  353503  353505  353509  353515  353517  353523  353527  353529  353533  353539  353545  353547  353553  353557  353559  353565  353569  353575  353583  366461 

科目: 來(lái)源: 題型:

【題目】如圖,ABCDEB都是等邊三角形,點(diǎn)A、DB在同一直線上,如圖1

1)求證:DC=AE;

2)若BMCDBNAE,垂足分別為M、N,如圖2,求證:BMN是等邊三角形.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知是關(guān)于的方程的兩個(gè)不相等的實(shí)數(shù)根.

(1)求實(shí)數(shù)的取值范圍;

(2)已知等腰的一邊長(zhǎng)為7,若、恰好是另外兩邊長(zhǎng),求這個(gè)三角形的周長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

平均成績(jī)

中位數(shù)

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(1)完成表中填空① ;② ;

(2)請(qǐng)計(jì)算甲六次測(cè)試成績(jī)的方差;

(3)若乙六次測(cè)試成績(jī)方差為,你認(rèn)為推薦誰(shuí)參加比賽更合適,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】四邊形ABCD內(nèi)接于⊙O,點(diǎn)EAD上一點(diǎn),連接AC,CB,B=AEC.

(1)如圖1,求證:CE=CD;

(2)如圖2,若∠B+CAE=120°,ACD=2BAC,求∠BAD的度數(shù);

3)如圖3,在(2)的條件下,延長(zhǎng)CE交⊙O于點(diǎn)G,若tanBAC= EG=2,求AE的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)60°;(3)7.

【解析】試題分析:(1)利用圓的內(nèi)接四邊形定理得到∠CED=∠CDE.

(2) CHDEH, 設(shè)ECH=α,由(1CE=CD,α表示CAEBAC,BAD=BAC+CAE.3連接AG,作GNAC,AMEG,先證明CAG=BAC,設(shè)NG=5m,可得AN=11m,利用直角AGM, AEM勾股定理可以算出m的值并求出AE長(zhǎng).

試題解析:

1)解:證明:四邊形ABCD內(nèi)接于O.

∴∠B+∠D=180°,

∵∠B=∠AEC,

∴∠AEC+∠D=180°,

∵∠AEC+∠CED=180°,

∴∠D=CED,

CE=CD

2)解:作CHDEH

設(shè)ECH=α,由(1CE=CD,

∴∠ECD=2α

∵∠B=∠AEC,B+∠CAE=120°

∴∠CAE+∠AEC=120°,

∴∠ACE=180°﹣∠AEC﹣∠ACE=60°,

∴∠CAE=90°﹣∠ACH=90°﹣60°+α=30°﹣α

ACD=∠ACH+∠HCD=60°+2α,

∵∠ACD=2∠BAC

∴∠BAC=30°+α,

∴∠BAD=∠BAC+∠CAE=30°+α+30°﹣α=60°

3)解:連接AG,作GNACAMEG,

∵∠CED=∠AEG,CDE=∠AGE,CED=∠CDE,

∴∠AEG=∠AGE,

AE=AG,

EM=MG=EG=1

∴∠EAG=∠ECD=2α,

∴∠CAG=∠CAD+∠DAG=30°﹣α+2α=∠BAC,

tanBAC=,

設(shè)NG=5m,可得AN=11m,AG==14m,

∵∠ACG=60°,

CN=5m,AM=8mMG==2m=1,

m=,

CE=CD=CG﹣EG=10m﹣2=3

AE===7

型】解答
結(jié)束】
27

【題目】二次函數(shù)y=x12+k分別與x軸、y軸交于AB、C三點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),直線y=x+2經(jīng)過(guò)點(diǎn)B,且與y軸交于點(diǎn)D

(1)如圖1,求k的值;

(2)如圖2,在第一象限的拋物線上有一動(dòng)點(diǎn)P,連接AP,過(guò)PPEx軸于點(diǎn)E,過(guò)EEFAP于點(diǎn)F,過(guò)點(diǎn)D作平行于x軸的直線分別與直線FE、PE交于點(diǎn)G、H,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段GH的長(zhǎng)為d,求dt的函數(shù)關(guān)系式,并直接寫(xiě)出t的取值范圍;

3)在(2)的條件下,過(guò)點(diǎn)G作平行于y軸的直線分別交AP、x軸和拋物線于點(diǎn)M、TN,tanMEA= ,點(diǎn)K為第四象限拋物線上一點(diǎn),且在對(duì)稱軸左側(cè),連接KA,在射線KA上取一點(diǎn)R,連接RM,過(guò)點(diǎn)KKQAKPE的延長(zhǎng)線于Q,連接AQHK,若∠RAERMA=45°AKQ與△HKQ的面積相等,求點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】初一五班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3.

1)該班男生和女生各有多少人?

2)學(xué)校決定派該班30名學(xué)生勤工儉學(xué),練習(xí)制作樂(lè)高零件,經(jīng)測(cè)試,該班男、女生每天能加工的零件數(shù)分別為50個(gè)和45個(gè),為保證他們每天加工的零件總數(shù)不少于1460個(gè),那么至少需要派多少名男學(xué)生?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某文教店老板到批發(fā)市場(chǎng)選購(gòu)A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購(gòu)進(jìn)A種套裝的數(shù)量是用75元購(gòu)進(jìn)B種套裝數(shù)量的2倍.

(1)求A,B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?

(2)若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購(gòu)進(jìn)B品牌的數(shù)量比購(gòu)進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過(guò)120元,則最少購(gòu)進(jìn)A品牌工具套裝多少套?

【答案】(1)A種品牌套裝每套進(jìn)價(jià)為10元,B種品牌套裝每套進(jìn)價(jià)為7.5元;(2)最少購(gòu)進(jìn)A品牌工具套裝17套.

【解析】試題分析:(1)利用兩種套裝的套數(shù)作為等量關(guān)系列方程求解.(2)利用總獲利大于等于120,解不等式.

試題解析:

1)解:設(shè)B種品牌套裝每套進(jìn)價(jià)為x元,則A種品牌套裝每套進(jìn)價(jià)為(x+2.5)元.

根據(jù)題意得: =2×,

解得:x=7.5,

經(jīng)檢驗(yàn),x=7.5為分式方程的解,

x+2.5=10

答:A種品牌套裝每套進(jìn)價(jià)為10元,B種品牌套裝每套進(jìn)價(jià)為7.5元.

2)解:設(shè)購(gòu)進(jìn)A品牌工具套裝a套,則購(gòu)進(jìn)B品牌工具套裝(2a+4)套,

根據(jù)題意得:(13﹣10a+9.5﹣7.5)(2a+4)>120

解得:a16,

a為正整數(shù),

a取最小值17

答:最少購(gòu)進(jìn)A品牌工具套裝17套.

點(diǎn)睛:分式方程應(yīng)用題一設(shè),一般題里有兩個(gè)有關(guān)聯(lián)的未知量,先設(shè)出一個(gè)未知量,并找出兩個(gè)未知量的聯(lián)系;二列,找等量關(guān)系,列方程,這個(gè)時(shí)候應(yīng)該注意的是和差分倍關(guān)系:三解,正確解分式方程;四驗(yàn),應(yīng)用題要雙檢驗(yàn)五答,應(yīng)用題要寫(xiě)答.

型】解答
結(jié)束】
26

【題目】四邊形ABCD內(nèi)接于⊙O,點(diǎn)EAD上一點(diǎn),連接AC,CB,B=AEC.

(1)如圖1,求證:CE=CD;

(2)如圖2,若∠B+CAE=120°,ACD=2BAC,求∠BAD的度數(shù);

3)如圖3,在(2)的條件下,延長(zhǎng)CE交⊙O于點(diǎn)G,若tanBAC= ,EG=2,求AE的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,PAD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E),PECD相交于點(diǎn)O,且OE=OD.

(1)求證:PE=DH;

(2)若AB=10,BC=8,求DP的長(zhǎng).

【答案】1見(jiàn)解析;2

【解析】試題分析:(1) 先證明DOP≌△EOH,再利用等量代換得到PE=DH.

(2) 設(shè)DP=x RtBCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.

試題解析:

1)解:證明:OD=OE,D=∠E=90°,DOP=∠EOH,

∴△DOP≌△EOH,

OP=OH

PO+OE=OH+OD,

PE=DH.

2)解:設(shè)DP=x,則EH=x,BH=10﹣x,

CH=CDDH=CDPE=10﹣8﹣x=2+x,

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2,

x=,

DP=

型】解答
結(jié)束】
25

【題目】某文教店老板到批發(fā)市場(chǎng)選購(gòu)A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購(gòu)進(jìn)A種套裝的數(shù)量是用75元購(gòu)進(jìn)B種套裝數(shù)量的2倍.

(1)求A,B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?

(2)若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購(gòu)進(jìn)B品牌的數(shù)量比購(gòu)進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過(guò)120元,則最少購(gòu)進(jìn)A品牌工具套裝多少套?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】解方程或方程組.

1 2

3 4

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】為了解青少年形體情況,現(xiàn)隨機(jī)抽查了若干名初中學(xué)生坐姿、站姿、走姿的好壞情況(如果一個(gè)學(xué)生有一種以上不良姿勢(shì),以他最突出的一種作記載),并將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:

(1)求這次被抽查形體測(cè)評(píng)的學(xué)生一共有多少人?

(2)求在被調(diào)查的學(xué)生中三姿良好的學(xué)生人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若全市有5萬(wàn)名初中生,那么估計(jì)全市初中生中,坐姿和站姿不良的學(xué)生共有多少人?

【答案】(1)500名;(2)75名;(3)2.5萬(wàn)

【解析】試題分析:(1)用類(lèi)型人數(shù)除以所占百分比就是總?cè)藬?shù).(2)用總?cè)藬?shù)乘以15%.

(3) 坐姿和站姿不良的學(xué)生的學(xué)生的百分比乘以總?cè)藬?shù).

試題解析:

(1)解:100÷20%=500(名),

答:這次被抽查形體測(cè)評(píng)的學(xué)生一共是500名;

(2)解:三姿良好的學(xué)生人數(shù):500×15%=75名,

補(bǔ)全統(tǒng)計(jì)圖如圖所示;

(3)解:5萬(wàn)×(20%+30%)=2.5萬(wàn),

答:全市初中生中,坐姿和站姿不良的學(xué)生有2.5萬(wàn)人.

型】解答
結(jié)束】
24

【題目】如圖,矩形ABCD中,PAD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E),PECD相交于點(diǎn)O,且OE=OD.

(1)求證:PE=DH;

(2)若AB=10,BC=8,求DP的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】1,圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.

(1)如圖1,在小正方形的頂點(diǎn)上確定一點(diǎn)C,連接AC、BC,使得△ABC為直角三角形,其面積為5,并直接寫(xiě)出△ABC的周長(zhǎng);

(2)如圖2,在小正方形的頂點(diǎn)上確定一點(diǎn)D,連接AD、BD,使得△ABD中有一個(gè)內(nèi)角為45°,且面積為3.

【答案】15+3;23.

【解析】試題分析:(1)構(gòu)造直角三角形,AB=且是直角邊,面積是5,可以求出另外一條直角邊BC長(zhǎng)度,最后連接AC.

(2)先構(gòu)造一個(gè)45°角,再利用面積是3,可畫(huà)出圖象.

試題解析:

1)解:如圖1所示:ABC即為所求,

ABC的周長(zhǎng)為 +2+5=5+3;

2)解:如圖2所示:ABD中,ADB=45°且面積為3

型】解答
結(jié)束】
23

【題目】為了解青少年形體情況,現(xiàn)隨機(jī)抽查了若干名初中學(xué)生坐姿、站姿、走姿的好壞情況(如果一個(gè)學(xué)生有一種以上不良姿勢(shì),以他最突出的一種作記載),并將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:

(1)求這次被抽查形體測(cè)評(píng)的學(xué)生一共有多少人?

(2)求在被調(diào)查的學(xué)生中三姿良好的學(xué)生人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若全市有5萬(wàn)名初中生,那么估計(jì)全市初中生中,坐姿和站姿不良的學(xué)生共有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案