科目: 來源: 題型:
【題目】如圖,正方形ABCD中,點E是AD邊的中點,BD,CE交于點H,BE、AH交于點G,則下列結論:
①∠ABE=∠DCE;②∠AHB=∠EHD;③S△BHE=S△CHD;④AG⊥BE.其中正確的是( )
A.①③B.①②③④C.①②③D.①③④
查看答案和解析>>
科目: 來源: 題型:
【題目】先化簡,再求值: ÷(-a+2),其中a=2sin60°+3tan45°.
【答案】﹣.
【解析】試題分析:先因式分解,再通分,約分化簡,代入數值求值.
試題解析:
解:原式= ÷(-)
=÷=,
∵a=2sin60°+3tan45°=2×+3×1=+3
∴原式==﹣.
點睛:辨析分式與分式方程
分式,整式A除以整式B,可以表示成的的形式.如果B中含有字母,那么稱 為分式.分式特點是沒有等號,分式加減一般需要通分.
(2)分式方程,分母中含有未知數的方程叫做分式方程.特點是有等號,要先確定最簡公分母,去分母的時候要每一項乘以最簡公分母,所以一般不需要通分,而且要檢驗.
【題型】解答題
【結束】
22
【題目】圖1,圖2是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.
(1)如圖1,在小正方形的頂點上確定一點C,連接AC、BC,使得△ABC為直角三角形,其面積為5,并直接寫出△ABC的周長;
(2)如圖2,在小正方形的頂點上確定一點D,連接AD、BD,使得△ABD中有一個內角為45°,且面積為3.
查看答案和解析>>
科目: 來源: 題型:
【題目】問題解決:如圖1,中,為邊上的中線,則______.
問題探究:
(1)如圖2,分別是的中線,與相等嗎?
解:中,由問題解決的結論可得,,.
∴
∴
即.
(2)圖2中,仿照(1)的方法,試說明.
(3)如圖3,,,分別是的中線,則______,______,______.
問題拓展:
(1)如圖4,分別為四邊形的邊的中點,請直接寫出陰影部分的面積與四邊形的面積之間的數量關系:______.
(2)如圖5,分別為四邊形的邊的中點;請直接寫出陰影部分的面積與四邊形的面積之間的數量關系:______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在□ABCD中,按以下步驟作圖:①以點A為圓心,AB的長為半徑作弧,交AD于點F;②分別以點F,B為圓心大于FB的長為半徑作弧,兩弧在∠DAB內交于點G;③作射線AG,交邊BC于點E,連接EF.若AB=5,BF=8,則四邊形ABEF的面積為( )
A.12B.20C.24D.48
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,反映的是小麗從家外出到最終回家,離家距離(米)與時間(分)的關系圖。請根據圖像回答下列問題:
(1)小麗在A點表示含義:出發(fā)后______分鐘時,離家距離______米;
(2)出發(fā)后6-10分鐘之間可能發(fā)生了什么情況:______________________________,出發(fā)后14-18分鐘之間可能發(fā)生了什么情況: ________________________.
(3)在28分鐘內的行進過程中,____________段時間的速度最慢,為____________米分;
(4)小麗在回家路上,第28分鐘時停了4分鐘,之后立即以100米/分的速度回到家.請寫出計算過程,并在圖中補上28分鐘以后的路程與時間關系圖。
(5)小麗一開始從家外出到最終回家,中途共停留了____________分鐘.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AD是中線,∠BAD=∠B+∠C,tan∠ABC=,則tan∠BAD=________.
【答案】
【解析】延長AD到E,使AD=DE,CF ,
在與,
, ,所以,
是等腰三角形,s
設EM= x,DE=11,MC=10,
,
,
x=,
tan∠BAD=.
故答案為.
點睛:倍長中線法構造全等三角形,如圖,AD是中線,令AD=DE,則ADC全等EBD.
【題型】填空題
【結束】
21
【題目】先化簡,再求值: ÷(-a+2),其中a=2sin60°+3tan45°.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場為了吸引顧客,設立了一個如圖可以自由轉動的轉盤,并規(guī)定:顧客每購買300元的商品,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅、綠或黃色區(qū)域,顧客就可以獲得100元、50元,20元的購物券.(轉盤被等分成20個扇形),已知甲顧客購物320元.
(1)他獲得購物券的概率是多少?
(2)他得到100元、50元、20元購物券的概率分別是多少?
(3)若要讓獲得20元購物券的概率變?yōu)?/span>,則轉盤的顏色部分怎樣修改?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com