科目: 來源: 題型:
【題目】如圖(1),AB∥CD,試求∠BPD與∠B、∠D的數(shù)量關(guān)系,說明理由.
(1)填空:
解:過點(diǎn)P作EF∥AB,
∴∠B+∠BPE=180°
∵AB∥CD,EF∥AB
∴ (如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)
∠EPD+ =180°
∴∠B+∠BPE+∠EPD+∠D=360°
∴∠B+∠BPD+∠D=360°
(2)依照上面的解題方法,觀察圖(2),已知AB∥CD,猜想圖中的∠BPD與∠B、∠D的數(shù)量關(guān)系,并說明理由.
(3)觀察圖(3)和(4),已知AB∥CD,直接寫出圖中的∠BPD與∠B、∠D的數(shù)量關(guān)系,不用說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長CA至點(diǎn)E,使AE=AC;延長CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)試判斷四邊形ABNE的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,已知∠B和∠C的平分線相交于點(diǎn)F,經(jīng)過點(diǎn)F作DE//BC,交AB于D,交AC于點(diǎn)E,若BD+CE=9,則線段DE的長為( )
A. 9 B. 8 C. 7 D. 6
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A,點(diǎn)B,點(diǎn)C表示的數(shù)分別為﹣2,1,6.
(1)線段AB的長度為 個單位長度,線段AC的長度為 個單位長度.
(2)點(diǎn)P是數(shù)軸上的一個動點(diǎn),從A點(diǎn)出發(fā),以每秒1個單位長度的速度,沿數(shù)軸的正方向運(yùn)動,運(yùn)動時間為t秒(0≤t≤8).用含t的代數(shù)式表示:線段BP的長為 個單位長度,點(diǎn)P在數(shù)軸上表示的數(shù)為 ;
(3)點(diǎn)M,點(diǎn)N都是數(shù)軸上的動點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒4個單位長度的速度運(yùn)動,點(diǎn)N從點(diǎn)C出發(fā)以每秒3個單位長度的速度運(yùn)動.設(shè)點(diǎn)M,N同時出發(fā),運(yùn)動時間為x秒.點(diǎn)M,N相向運(yùn)動,當(dāng)點(diǎn)M,N兩點(diǎn)間的距離為13個單位長度時,求x的值,并直接寫出此時點(diǎn)M在數(shù)軸上表示的數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】∠AOB與∠COD有共同的頂點(diǎn)O,其中∠AOB=∠COD=60°.
(1)如圖①,試判斷∠AOC與∠BOD的大小關(guān)系,并說明理由;
(2)如圖①,若∠BOC=10°,求∠AOD的度數(shù);
(3)如圖①,猜想∠AOD與∠BOC的數(shù)量關(guān)系,并說明理由;
(4)若改變∠AOB,∠COD的位置,如圖②,則(3)的結(jié)論還成立嗎?若成立,請證明;若不成立,請直接寫出你的猜想.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0;②2a+b=0;③a+b+c>0;④4a﹣2b+c>0,其中正確的個數(shù)為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)O是直線AB上一點(diǎn),OD平分∠BOC,∠COE=90°.
(1)若∠AOC=48°,求∠DOE的度數(shù).
(2)若∠AOC=α,則∠DOE= (用含α的代數(shù)式表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題: 如圖1,將銳角三角形紙片ABC(BC>AC)經(jīng)過兩次折疊,得到邊AB,BC,CA上的點(diǎn)D,E,F(xiàn).使得四邊形DECF恰好為菱形.
小明的折疊方法如下:
如圖2,(1)AC邊向BC邊折疊,使AC邊落在BC邊上,得到折痕交AB于D; (2)C點(diǎn)向AB邊折疊,使C點(diǎn)與D點(diǎn)重合,得到折痕交BC邊于E,交AC邊于F.
老師說:“小明的作法正確.”
請回答:小明這樣折疊的依據(jù)是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)C是⊙O上一點(diǎn),⊙O的半徑為 ,D、E分別是弦AC、BC上一動點(diǎn),且OD=OE= ,則AB的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com