相關(guān)習(xí)題
 0  280542  280550  280556  280560  280566  280568  280572  280578  280580  280586  280592  280596  280598  280602  280608  280610  280616  280620  280622  280626  280628  280632  280634  280636  280637  280638  280640  280641  280642  280644  280646  280650  280652  280656  280658  280662  280668  280670  280676  280680  280682  280686  280692  280698  280700  280706  280710  280712  280718  280722  280728  280736  366461 

科目: 來源: 題型:解答題

15.據(jù)資料顯示我國西部山區(qū)貧困中小學(xué)生上學(xué)的費(fèi)用,小學(xué)生平均每年支出約600元(按6年計(jì)),初中生平均每年支出約800元(按3年計(jì)).
(1)中東部地區(qū)“先進(jìn)”市2005年小學(xué)、中學(xué)、高中學(xué)生共計(jì)約7.2萬人,若平均每2人每周從零花錢中節(jié)約1元錢(一年按52周計(jì)算),用來幫助西部山區(qū)貧困中小學(xué)生讀完一至九年級,可以幫助多少人?
(2)到2007年,“先進(jìn)”市小學(xué)、中學(xué)、高中學(xué)生的總數(shù)降為5.832萬人,而平均每人每周從零花錢中節(jié)約的錢將翻兩番(原來的4倍).2007年,由于國家對西部山區(qū)小學(xué)初中生采取免除學(xué)雜費(fèi)和書本費(fèi)的政策,因此使得他們上學(xué)支出的費(fèi)用減少.以2005年為基礎(chǔ)計(jì)算,他們上學(xué)支出費(fèi)用平均每年降低的百分?jǐn)?shù)將比“先進(jìn)”市小學(xué)、中學(xué)、高中學(xué)生總?cè)藬?shù)平均每年降低的百分比還多1個(gè)百分比(1%).請算一算:2007年“先進(jìn)”市小學(xué)、中學(xué)、高中學(xué)生從零花錢中節(jié)約出來的錢,用來幫助西部山區(qū)貧困中小學(xué)生讀完一至九年級,可以達(dá)到多少人?(結(jié)果保留整數(shù))

查看答案和解析>>

科目: 來源: 題型:選擇題

14.如圖,線段AB=4,C為線段AB上的一個(gè)動(dòng)點(diǎn),以AC、BC為邊作等邊△ACD和等邊△BCE,⊙O外接于△CDE,則⊙O半徑的最小值為( 。
A.4B.$\frac{2\sqrt{3}}{3}$C.$\frac{3\sqrt{2}}{2}$D.2

查看答案和解析>>

科目: 來源: 題型:填空題

13.如圖,邊長為4正方形ABCD中,E為邊AD的中點(diǎn),連接線段EC交BD于點(diǎn)F,點(diǎn)M是線段CE延長線上的一點(diǎn),且∠MAF為直角,則DM的長為$\sqrt{13}$.

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖1,拋物線y=-0.5x2+bx+c與x軸交于B(3,0)、C(8.0)兩點(diǎn),拋物線另有一點(diǎn)A在第一象限內(nèi),連接AO、AC,且AO=AC.

(1)求拋物線的解析式;
(2)將△OAC繞x軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積;
(3)如圖2,將△OAC沿x軸翻折后得△ODC,設(shè)垂直于x軸的直線l:x=n與(1)中所求的拋物線交于點(diǎn)M,與CD交于點(diǎn)N,若直線l 沿x軸方向左右平移,且交點(diǎn)M始終位于拋物線上A、C兩點(diǎn)之間時(shí),試探究:當(dāng)n為何值時(shí),四邊形AMCN的面積取得最大值,并求出這個(gè)最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

11.如圖,在等腰△ABC中,AB=AC,AD⊥BC,垂足為D,以AD為直徑作⊙O,⊙O分別交AB、AC于E、F.
(1)求證:BE=CF;
(2)設(shè)AD、EF相交于G,若EF=8,⊙O的半徑為5,求DG的長.

查看答案和解析>>

科目: 來源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx-7的圖象交x軸于A,B兩點(diǎn),交y軸于點(diǎn)D,點(diǎn)C為拋物線的頂點(diǎn),且A,C兩點(diǎn)的橫坐標(biāo)分別為1和4D.
(1)求點(diǎn)B的坐標(biāo);
(2)求二次函數(shù)的函數(shù)表達(dá)式;
(3)在(2)的拋物線上,是否存在點(diǎn)P,使得∠BAP=45°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

9.如圖(1)已知:△ABC是等腰三角形,AB=BC,點(diǎn)D為△ABC外一點(diǎn),∠DBC=2∠DAC.
(1)求證:BD=BC.
(2)如圖2,若∠BAC=60°,BG平分∠ABD,交CD的延長線于G,BG分別交AD、AC于點(diǎn)E、F,若EG=4EF,請你探究線段CF與BD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,在平面直角坐標(biāo)系中xOy,二次函數(shù)y=ax2-2ax+3的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,AB=4,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿x軸負(fù)方向以每秒1個(gè)單位長度的速度移動(dòng).過P點(diǎn)作PQ垂直于直線BC,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(t>0),△BPQ與△ABC重疊部分的面積為S.
(1)求這個(gè)二次函數(shù)的關(guān)系式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△BPQ繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°,當(dāng)旋轉(zhuǎn)后的△BPQ與二次函數(shù)的圖象有公共點(diǎn)時(shí),求t的取值范圍(直接寫出結(jié)果).

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6,
(1)如圖甲:在OA上選取一點(diǎn)D,將△COD沿CD翻折,使點(diǎn)O落在BC邊上,記為E.求折痕CD 所在直線的解析式;
(2)如圖乙:在OC上選取一點(diǎn)F,將△AOF沿AF翻折,使點(diǎn)O落在BC邊,記為G.
①求折痕AF所在直線的解析式;
②再作GH∥AB交AF于點(diǎn)H,若拋物線$y=-\frac{1}{12}{x^2}+h$過點(diǎn)H,求此拋物線的解析式,并判斷它與直線AF的公共點(diǎn)的個(gè)數(shù).
(3)如圖丙:一般地,在以O(shè)A、OC上選取適當(dāng)?shù)狞c(diǎn)I、J,使紙片沿IJ翻折后,點(diǎn)O落在BC邊上,記為K.請你猜想:①折痕IJ所在直線與第(2)題②中的拋物線會(huì)有幾個(gè)公共點(diǎn);②經(jīng)過K作KL∥AB與IJ相交于L,則點(diǎn)L是否必定在拋物線上.將以上兩項(xiàng)猜想在(l)的情形下分別進(jìn)行驗(yàn)證.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知:拋物線y=-x2-2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為P.
(1)求A、B、P三點(diǎn)的坐標(biāo);
(2)在直角坐標(biāo)系內(nèi)畫出拋物線簡圖,求出S△ACP;
(3)已知點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),且在第二象限內(nèi),當(dāng)△ACM的面積最大時(shí),求出此時(shí)點(diǎn)M的坐標(biāo)和△ACM的最大面積.

查看答案和解析>>

同步練習(xí)冊答案