相關(guān)習(xí)題
 0  146696  146704  146710  146714  146720  146722  146726  146732  146734  146740  146746  146750  146752  146756  146762  146764  146770  146774  146776  146780  146782  146786  146788  146790  146791  146792  146794  146795  146796  146798  146800  146804  146806  146810  146812  146816  146822  146824  146830  146834  146836  146840  146846  146852  146854  146860  146864  146866  146872  146876  146882  146890  366461 

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(24):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某水果經(jīng)銷商上月份銷售一種新上市的水果,平均售價(jià)為10元/千克,月銷售量為1000千克.經(jīng)市場調(diào)查,若將該種水果價(jià)格調(diào)低至x元/千克,則本月份銷售量y(千克)與x(元/千克)之間滿足一次函數(shù)關(guān)系y=kx+b.且當(dāng)x=7時(shí),y=2000;x=5時(shí),y=4000.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)已知該種水果上月份的成本價(jià)為5元/千克,本月份的成本價(jià)為4元/千克,要使本月份銷售該種水果所獲利潤比上月份增加20%,同時(shí)又要讓顧客得到實(shí)惠,那么該種水果價(jià)格每千克應(yīng)調(diào)低至多少元?[利潤=售價(jià)-成本價(jià)].

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(24):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某公司試銷一種成本為30元/件的新產(chǎn)品,按規(guī)定試銷時(shí)的銷售單價(jià)不低于成本單價(jià),又不高于80元/件,試銷中每天的銷售量y(件)與銷售單價(jià)x(元/件)滿足下表中的函數(shù)關(guān)系.
x(元/件)3540455055
y(件)550500450400350
(1)試求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)公司試銷該產(chǎn)品每天獲得的毛利潤為S(元),求S與x之間的函數(shù)表達(dá)式(毛利潤=銷售總價(jià)-成本總價(jià));
(3)當(dāng)銷售單價(jià)定為多少時(shí),該公司試銷這種產(chǎn)品每天獲得的毛利潤最大?最大毛利潤是多少?此時(shí)每天的銷售量是多少?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(24):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價(jià)40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價(jià)的辦法,經(jīng)市場調(diào)研,每降價(jià)1元,月銷售量可增加2萬件.
(1)求出月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(2)求出月銷售利潤z(萬元)(利潤=售價(jià)-成本價(jià))與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式(不必寫x的取值范圍);
(3)請(qǐng)你通過(2)中的函數(shù)關(guān)系式及其大致圖象幫助公司確定產(chǎn)品的銷售單價(jià)范圍,使月銷售利潤不低于480萬元.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(24):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,有一座拋物線形拱橋,橋下面在正常水位AB時(shí),寬20m,水位上升3m就達(dá)到警戒線CD,這時(shí)水面寬度為10m.
(1)在如圖的坐標(biāo)系中求拋物線的解析式;
(2)若洪水到來時(shí),水位以每小時(shí)0.2m的速度上升,從警戒線開始,再持續(xù)多少小時(shí)才能到達(dá)拱橋頂?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(24):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某環(huán)保器材公司銷售一種市場需求較大的新型產(chǎn)品,已知每件產(chǎn)品的進(jìn)價(jià)為40元,經(jīng)銷過程中測出銷售量y(萬件)與銷售單價(jià)x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷售該種產(chǎn)品的總開支z(萬元)(不含進(jìn)價(jià))與年銷量y(萬件)存在函數(shù)關(guān)系z(mì)=10y+42.5.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)寫出該公司銷售該種產(chǎn)品年獲利w(萬元)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式;(年獲利=年銷售總金額一年銷售產(chǎn)品的總進(jìn)價(jià)一年總開支金額)當(dāng)銷售單價(jià)x為何值時(shí),年獲利最大?最大值是多少?
(3)若公司希望該產(chǎn)品一年的銷售獲利不低于57.5萬元,請(qǐng)你利用(2)小題中的函數(shù)圖象幫助該公司確定這種產(chǎn)品的銷售單價(jià)的范圍.在此條件下要使產(chǎn)品的銷售量最大,你認(rèn)為銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(24):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某旅游勝地欲開發(fā)一座景觀山.從山的側(cè)面進(jìn)行勘測,迎面山坡線ABC由同一平面內(nèi)的兩段拋物線組成,其中AB所在的拋物線以A為頂點(diǎn)、開口向下,BC所在的拋物線以C為頂點(diǎn)、開口向上.以過山腳(點(diǎn)C)的水平線為x軸、過山頂(點(diǎn)A)的鉛垂線為y軸建立平面直角坐標(biāo)系如圖(單位:百米).已知AB所在拋物線的解析式為y=-x2+8,BC所在拋物線的解析式為y=(x-8)2,且已知B(m,4).
(1)設(shè)P(x,y)是山坡線AB上任意一點(diǎn),用y表示x,并求點(diǎn)B的坐標(biāo);
(2)從山頂開始、沿迎面山坡往山下鋪設(shè)觀景臺(tái)階.這種臺(tái)階每級(jí)的高度為20厘米,長度因坡度的大小而定,但不得小于20厘米,每級(jí)臺(tái)階的兩端點(diǎn)在坡面上(見圖).
①分別求出前三級(jí)臺(tái)階的長度(精確到厘米);
②這種臺(tái)階不能一直鋪到山腳,為什么?
(3)在山坡上的700米高度(點(diǎn)D)處恰好有一小塊平地,可以用來建造索道站.索道的起點(diǎn)選擇在山腳水平線上的點(diǎn)E處,OE=1600(米).假設(shè)索道DE可近似地看成一段以E為頂點(diǎn)、開口向上的拋物線,解析式為y=(x-16)2.試求索道的最大懸空高度.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(24):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某校數(shù)學(xué)研究性學(xué)習(xí)小組準(zhǔn)備設(shè)計(jì)一種高為60cm的簡易廢紙箱.如圖1,廢紙箱的一面利用墻,放置在地面上,利用地面作底,其它的面用一張邊長為60cm的正方形硬紙板圍成.經(jīng)研究發(fā)現(xiàn):由于廢紙箱的高是確定的,所以廢紙箱的橫截面圖形面積越大,則它的容積越大.

(1)該小組通過多次嘗試,最終選定下表中的簡便且易操作的三種橫截面圖形,如圖2,是根據(jù)這三種橫截面圖形的面積y(cm2)與x(cm)(見表中橫截面圖形所示)的函數(shù)關(guān)系式而繪制出的圖象.請(qǐng)你根據(jù)有信息,在表中空白處填上適當(dāng)?shù)臄?shù)、式,并完成y取最大值時(shí)的設(shè)計(jì)示意圖;

(2)在研究性學(xué)習(xí)小組展示研究成果時(shí),小華同學(xué)指出:圖2中“底角為60°的等腰梯形”的圖象與其他兩個(gè)圖象比較,還缺少一部分,應(yīng)該補(bǔ)畫.你認(rèn)為他的說法正確嗎?請(qǐng)簡要說明理由.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(24):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時(shí),大孔水面寬度AB=20米,頂點(diǎn)M距水面6米(即MO=6米),小孔頂點(diǎn)N距水面4.5米(即NC=4.5米).當(dāng)水位上漲剛好淹沒小孔時(shí),借助圖中的直角坐標(biāo)系,求此時(shí)大孔的水面寬度EF.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(24):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某塑料大棚的截面如圖所示,曲線部分近似看作拋物線.現(xiàn)測得AB=6米,最高點(diǎn)D到地面AB的距離DO=2.5米,點(diǎn)O到墻BC的距離OB=1米.借助圖中的直角坐標(biāo)系,回答下列問題:
(1)寫出點(diǎn)A,B的坐標(biāo);
(2)求墻高BC.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(24):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

我市英山縣某茶廠種植“春蕊牌”綠茶,由歷年來市場銷售行情知道,從每年的3月25日起的180天內(nèi),綠茶市場銷售單價(jià)y(元)與上市時(shí)間t(天)的關(guān)系可以近似地用如圖①中的一條折線表示.綠茶的種植除了與氣候、種植技術(shù)有關(guān)外,其種植的成本單價(jià)z(元)與上市時(shí)間t(天)的關(guān)系可以近似地用如圖②的拋物線表示.
(1)直接寫出圖①中表示的市場銷售單價(jià)y(元)與上市時(shí)間t(天)(t>0)的函數(shù)關(guān)系式;
(2)求出圖②中表示的種植成本單價(jià)z(元)與上市時(shí)間t(天)(t>0)的函數(shù)關(guān)系式;
(3)認(rèn)定市場銷售單價(jià)減去種植成本單價(jià)為純收益單價(jià),問何時(shí)上市的綠茶純收益單價(jià)最大?
(說明:市場銷售單價(jià)和種植成本單價(jià)的單位:元/500克.)

查看答案和解析>>

同步練習(xí)冊(cè)答案