科目: 來源:2011年初中畢業(yè)升學(xué)考試(黑龍江哈爾濱卷)數(shù)學(xué) 題型:解答題
如圖,四邊形ABCD是平行四邊形,AC是對角線,BE⊥AC,垂足為E,DF⊥AC ,垂足為F.求證DF=BE
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué) 題型:解答題
(2011•福州)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學(xué)考試(湖南衡陽卷)數(shù)學(xué) 題型:解答題
(2011湖南衡陽,26,10分)如圖,在矩形ABCD中,AD=4,AB=m(m>4),點P是AB邊上的任意一點(不與A、B重合),連結(jié)PD,過點P作PQ⊥PD,交直線BC于點Q.
(1)當(dāng)m=10時,是否存在點P使得點Q與點C重合?若存在,求出此時AP的長;若不存在,說明理由;
(2)連結(jié)AC,若PQ∥AC,求線段BQ的長(用含m的代數(shù)式表示)
(3)若△PQD為等腰三角形,求以P、Q、C、D為頂點的四邊形的面積S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué) 題型:解答題
(11·臺州)(10分)丁丁想在一個矩形材料中剪出如圖陰影所示的梯形,作為要制作的風(fēng)箏的一個翅膀.請你根據(jù)圖中的數(shù)據(jù)幫丁丁計算出BE、CD的長度(精確到個位,≈1.7).
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué) 題型:解答題
(11·臺州)(8分)如圖,分別延長□ABCD的邊BA、DC到點E、H,使得AE
=AB,CH=CD,連接EH,分別交AD、BC于點F、G.
求證:△AEF≌△CHG.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學(xué)考試(山東濟寧卷)數(shù)學(xué) 題型:解答題
(8分)數(shù)學(xué)課上,李老師出示了這樣一道題目:如圖,正方形的邊長為,為邊延長線上的一點,為的中點,的垂直平分線交邊于,交邊的延長線于.當(dāng)時,與的比值是多少?
經(jīng)過思考,小明展示了一種正確的解題思路:過作直線平行于交,分別于,,如圖,則可得:,因為,所以.可求出和的值,進(jìn)而可求得與的比值.
(1) 請按照小明的思路寫出求解過程.
(2) 小東又對此題作了進(jìn)一步探究,得出了的結(jié)論.你認(rèn)為小東的這個結(jié)論正確嗎?如果正確,請給予證明;如果不正確,請說明理由.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學(xué)考試(遼寧本溪卷)數(shù)學(xué) 題型:解答題
如圖,點G是正方形ABCD對角線CA的延長線上任意一點,以線段AG為邊作一個正方形AEFG,線段EB和GD相交于點H.
(1)求證:EB=GD;
(2)判斷EB與GD的位置關(guān)系,并說明理由;
(3)若AB=2,AG=,求EB的長.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學(xué)考試(安徽卷)數(shù)學(xué) 題型:解答題
如圖,正方形ABCD的四個頂點分別在四條平行線l1、l2、l3、l4上,這四條直
線中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0).
(1)求證:h1=h2;
(2)設(shè)正方形ABCD的面積為S,求證:S=(h1+h2)2+h12;
(3)若h1+h2=1,當(dāng)h1變化時,說明正方形ABCD的面積S隨h1的變化情況.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學(xué)考試(四川內(nèi)江卷)數(shù)學(xué) 題型:解答題
(滿分8分)如圖,已知直線AB與軸交于點C,與雙曲線交于A(3,
)、B(-5,)兩點.AD⊥軸于點D,BE∥軸且與軸交于點E.
(1)求點B的坐標(biāo)及直線AB的解析式;
(2)判斷四邊形CBED的形狀,并說明理由.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學(xué)考試(湖南婁底卷)數(shù)學(xué) 題型:解答題
(本小題9分)如圖10,在直角三角形ABC中,ÐACB=90°,AC=BC=10,將△
ABC繞點B沿順時針方向旋轉(zhuǎn)90°得到△A1BC1.
(1)線段A1C1的長度是 ,ÐCBA1的度數(shù)是 .
(2)連結(jié)CC1,求證:四邊形CBA1C1是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com