如圖,∠AOP=∠BOP=15°,PC∥OB,PD⊥OB,若OC=4,則PD等于________.

2
分析:過(guò)點(diǎn)P作PE⊥OA于E,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得PD=PE,根據(jù)兩直線平行,同位角相等求出∠PCE=30°,兩直線平行,內(nèi)錯(cuò)角相等求出∠BOP=∠CPO,再求出∠AOP=∠CPO,根據(jù)等角對(duì)等邊可得PC=OC,然后根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出PE,即可得解.
解答:解:如圖,過(guò)點(diǎn)P作PE⊥OA于E,
∵∠AOP=∠BOP,PD⊥OB,
∴PD=PE,
∵∠AOP=∠BOP=15°,PC∥OB,
∴∠PCE=∠AOB=15°×2=30°,
∠BOP=∠CPO,
∴∠AOP=∠CPO,
∴PC=OC=4,
在Rt△CEP中,PE=PC=×4=2,
∴PD=2.
故答案為:2.
點(diǎn)評(píng):本題考查了直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),平行線的性質(zhì),以及等角對(duì)等邊的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,∠AOP=∠BOP=40°,CP∥OB,CP=4,則OC=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,∠AOP=∠BOP=15°,PD⊥OB于點(diǎn)D,PC∥OB,交OA于點(diǎn)C.若PD=6,則OC=
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=3,則PD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA于D,若PC=6,則PD=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,∠AOP=∠BOP,PD⊥OB,PC⊥OA,則下列結(jié)論正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案