【題目】如圖,海邊的一段堤岸高出海平面12米,附近的某建筑物高出海平面50米,演習中的某潛水艇在海平面下30米處.

(1)現(xiàn)以海平面的高度為基準,將其記為0米,高于海平面記為正,低于海平面記為負,那么堤岸、附近建筑物及潛水艇的高度各應如何表示?

(2)若以堤岸高度為基準,則堤岸、建筑物及潛水艇的高度又應如何表示?

【答案】(1)堤岸的高度為+12米,建筑物的高度為+50米,潛水艇的高度為-30米;(2)以堤岸高度為標準,則堤岸的高度為0米,建筑物的高度為+38米,潛水艇的高度為-42米.

【解析】

(1)在一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負表示

(2)根據(jù)“正”和“負”所表示的意義,列式進行計算即可得解

1)以海平面的高度為基準,將其記為0,堤岸的高度為+12,建筑物的高度為+50,潛水艇的高度為-30

堤岸的高度為+12建筑物的高度為+50潛水艇的高度為-30

(2)以海邊堤岸高度為基準,則堤岸的高度為0,建筑物的高度為+(50-12)=+38(米),潛水艇的高度為-12-30=-42(米)

以堤岸高度為標準,則堤岸的高度為0,建筑物的高度為+38,潛水艇的高度為-42

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點P是BC上的一點.

(1)請寫出圖中∠1的一對同位角,一對內(nèi)錯角,一對同旁內(nèi)角;

(2)求∠EFC與∠E的度數(shù);

(3)若∠BFP=46°,請判斷CE與PF是否平行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個正比例函數(shù)y1=k1x的圖象與一個一次函數(shù)y2=k2x+b的圖象相交于點A(3,4),且一次函數(shù)y2的圖像與y軸相交于點B(0,—5),與x軸交于點C.

(1)判斷△AOB的形狀并說明理由

(2)請寫出當y1>y2x的取值范圍;

(3)若將直線AB繞點A旋轉(zhuǎn),使△AOC的面積為8,求旋轉(zhuǎn)后直線AB的函數(shù)解析式;

(4)在x軸上求一點P使△POA為等腰三角形,請直接寫出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于點A(2,0)和點B,與y軸交于點C,頂點為點D,對稱軸為直線x=﹣1,點E為線段AC的中點,點F為x軸上一動點.

(1)直接寫出點B的坐標,并求出拋物線的函數(shù)關(guān)系式;
(2)當點F的橫坐標為﹣3時,線段EF上存在點H,使△CDH的周長最小,請求出點H,使△CDH的周長最小,請求出點H的坐標;
(3)在y軸左側(cè)的拋物線上是否存在點P,使以P,F(xiàn),C,D為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動點,點P從點A開始沿AB方向運動,且速度為每秒1cm,點Q從點B開始B→C方向運動,且速度為每秒2cm,它們同時出發(fā);設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長;

2)從出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)在運動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運動時間;若不能夠,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個不相等的實數(shù)根,求m的取值范圍;寫出一個滿足條件的m的值,并求此方程的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了了解九年級學生的體能,從九年級學生中隨機抽取部分學生進行體能測試,測試的結(jié)果分為A、B、C、D四個等級,并根據(jù)測試成績繪制了如下兩幅不完整的統(tǒng)計圖.
(1)這次抽樣調(diào)查的樣本容量是多少?B等級的有多少人?并補全條形統(tǒng)計圖;
(2)在扇形統(tǒng)計圖中,C等級對應扇形的圓心角為多少度?
(3)該校九年級學生有1500人,估計D等級的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,AC平分∠BAD,CEABE,且∠B+D=180°,

求證:AE=AD+BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在一次廣播操比賽中,初二 (1)班、初二(2)班、初二(3)班的各項得分如下:

服裝統(tǒng)一

動作整齊

動作準確

初二(1)班

初二(2)班

初二(3)班

(1)填空:根據(jù)表中提供的信息,在服裝統(tǒng)一方面,三個班得分的平均數(shù)是________;在動作整齊方面三個班得分的眾數(shù)是________;在動作準確方面最有優(yōu)勢的是________班.

(2)如果服裝統(tǒng)一、動作整齊、動作準確三個方面的重要性之比為,那么這三個班的排名順序怎樣?為什么?

(3)在(2)的條件下,你對三個班級中排名最靠后的班級有何建議?

查看答案和解析>>

同步練習冊答案