如圖①,已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A、C分別在DG和DE上,連接AE、BG.

(1)試猜想線段BG和AE的數(shù)量關系,請直接寫出你得到的結論                 
(2)將正方形DEFG繞點D逆時針方向旋轉一定角度后(旋轉角度大于0°,小于或等于360°),如圖②,通過觀察或測量等方法判斷(1)中的結論是否仍然成立?如果成立,請予以證明;如果不成立,請說明理由.
(3)若BC=DE=2,在(2)的旋轉過程中,當AE為最大值時,求AF的值.
(1)BG=AE.
(2)成立. 
如圖②,
連接AD.∵△ABC是等腰三直角角形,∠BAC=90°,點D是BC的中點.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.…………………………………………7分
(3)由(2)知,BG=AE,故當BG最大時,AE也最大.
正方形DEFG繞點D逆時針方向旋轉270°時,BG最大,如圖③.

若BC=DE=2,則AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=
(1)在Rt△BDG與Rt△EDA;根據(jù)邊角邊定理易得Rt△BDG≌Rt△EDA;故BG=AE;
(2)連接AD,根據(jù)直角三角形與正方形的性質(zhì)可得Rt△BDG≌Rt△EDA;進而可得BG=AE;
(3)根據(jù)(2)的結論,求BG的最大值,分析可得此時F的位置,由勾股定理可得答案.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法正確的是
A.軸對稱圖形的對稱軸只有一條
B.角的對稱軸是角的平分線
C.成軸對稱的兩條線段必在對稱軸同側
D.等邊三角形是軸對稱圖形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知點P(x+1,2x﹣1)關于x軸對稱的點在第一象限,試化簡:|x+2|+|1﹣x|.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

角是軸對稱圖形,其對稱軸是 角的平分線 所在的直線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列圖形中,不是軸對稱圖形的是                               (  )
A.有兩條邊相等的三角形
B.有一個角為45°的直角三角形
C.有一個角為60°的等腰三角形
D.一個內(nèi)角為40°,一個內(nèi)角為110°的三角形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,四個圖形中,是軸對稱圖形的有(     )
A.4個B.3個C.2個D.1個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在漢字中,有很多字可由一個漢字平移后組成新的漢字,如將“月”向右平移一個單位后,可組成漢字“朋”,你能再舉三個類似的漢字嗎?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,右邊的圖形中,經(jīng)過平移能得到左邊的圖形的是(   )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形繞點逆時針旋轉后得到正方形,邊交于點

(1)以圖中已標有字母的點為端點連結兩條線段(正方形的對角線除外),要求所連結的兩條線段相交且互相垂直,并說明這兩條線段互相垂直的理由;
(2)若正方形的邊長為,重疊部分(四邊形)的面積為,求旋轉的角度

查看答案和解析>>

同步練習冊答案