【題目】如圖所示,O是矩形ABCD的對(duì)角線的交點(diǎn),DEAC,CEBD

1)求證:OEDC

2)若∠AOD120°,DE2,求矩形ABCD的面積.

【答案】(1)證明見解析(2)4

【解析】

(1) 要證OE⊥DC,可先證四邊形OCED是菱形.由DE∥AC,CE∥BD,可得四邊形OCED是平行四邊形;又因?yàn)锳BCD是矩形,所以O(shè)C=OD.有一組鄰邊相等的平行四邊形是菱形.

(2)(1) 得出△ODC是等邊三角形,所以 DC=OD=OC=2 ,由四邊形ABCD是矩形,得到AC=2CO=4,RtADC中,由勾股定理得AD=2 ,再利用矩形面積公式即可解答.

(1)證明:

∵DE∥AC,CE∥BD

∴DE∥OC,CE∥OD

四邊形ODEC是平行四邊形

四邊形ODEC是矩形

∴OD=OC

四邊形ODEC是菱形

∴OE⊥DC

(2)解:∵DE=2,由(1)知,四邊形ODEC是菱形

∴OD=OC=DE=2

∵∠AOD=120°

∴∠DOC=60°

△ODC是等邊三角形

∴DC=OD=OC=2

四邊形ABCD是矩形

∴AC=2CO=4

Rt△ADC中,由勾股定理得AD=2

∴S矩形ABCD=2×2=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行超價(jià)收費(fèi),為更好地決策,自來水公司的隨機(jī)抽取了部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖,(每組數(shù)據(jù)包括在右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:

(1)此次抽樣調(diào)查的樣本容量是
(2)補(bǔ)全頻數(shù)分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數(shù).
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,AB3AC4,點(diǎn)PBC上任意一點(diǎn),連PA,以PA,PC為鄰邊作平行四邊形PAQC,連接PQ,則PQ的最小值為( 。

A. B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)正比例函數(shù)圖象與一個(gè)一次函數(shù)圖象交于點(diǎn)A(3,4),且一次函數(shù)的圖象與y軸相交于點(diǎn)B(0,-5).

(1)求這兩個(gè)函數(shù)的表達(dá)式;

(2)AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館普通票價(jià)20/,暑假為了促銷,新推出兩種優(yōu)惠卡

金卡售價(jià)600/每次憑卡不再收費(fèi)

銀卡售價(jià)150/,每次憑卡另收10

暑假普通票正常出售兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時(shí),所需總費(fèi)用為y

(1)分別寫出選擇銀卡、普通票消費(fèi)時(shí),yx之間的函數(shù)關(guān)系式

(2)在同一坐標(biāo)系中,若三種消費(fèi)方式對(duì)應(yīng)的函數(shù)圖象如圖所示請(qǐng)求出點(diǎn)A、B、C的坐標(biāo);

(3)請(qǐng)根據(jù)函數(shù)圖象,直接寫出選擇哪種消費(fèi)方式更合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題原型)

如圖①,ABCD,點(diǎn)M在直線ABCD之間,則∠M=∠B+D,小明解決上述問題的過程如下:

如圖②,過點(diǎn)MMNAB

則∠B______________

ABCD,(已知)

MNAB(輔助線的做法)

MNCD______

∴∠______=∠D______

∴∠B+D=∠BMD

請(qǐng)完成小明上面的過程.

(問題遷移)

如圖③,ABCD,點(diǎn)M與直線CD分別在AB的兩側(cè),猜想∠M、∠B、∠D之間有怎樣的數(shù)量關(guān)系,并加以說明.

(推廣應(yīng)用)

1)如圖④,ABCD,點(diǎn)M在直線AB、CD之間,∠ABM的平分線與∠CDM的平分線交于點(diǎn)N,∠M96°,則∠N_____°;

2)如圖⑤,ABCD,點(diǎn)M與直線CD分別在AB的兩側(cè),∠ABM的平分線與∠CDM的平分線交于點(diǎn)N,∠N25°,則∠M______°;

3)如圖⑥,ABCD,∠ABG的平分線與∠CDE的平分線交于點(diǎn)M,∠G78°,∠F64°,∠E64°,則∠M_______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù) 的圖象經(jīng)過點(diǎn)A(4,0),B(﹣4,﹣4),且與y軸交于點(diǎn)C.

(1)試求此二次函數(shù)的解析式;
(2)試證明:∠BAO=∠CAO(其中O是原點(diǎn));
(3)若P是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過P作y軸的平行線,分別交此二次函數(shù)圖象及x軸于Q、H兩點(diǎn),試問:是否存在這樣的點(diǎn)P,使PH=2QH?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字1,2,3,4.如圖2,正方形ABCD頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針方向連續(xù)跳幾個(gè)邊長(zhǎng).
如:若從圈A起跳,第一次擲得3,就順時(shí)針連續(xù)跳3個(gè)邊長(zhǎng),落到圈D;若第二次擲得2,就從D開始順時(shí)針連續(xù)跳2個(gè)邊長(zhǎng),落到圈B;…
設(shè)游戲者從圈A起跳.

(1)嘉嘉隨機(jī)擲一次骰子,求落回到圈A的概率P1
(2)淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她與嘉嘉落回到圈A的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)興趣小組在活動(dòng)時(shí),老師提出了這樣一個(gè)問題:如圖1,在中,,,DBC的中點(diǎn),求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長(zhǎng)ADE,使,請(qǐng)補(bǔ)充完整證明的推理過程.

求證:

證明:延長(zhǎng)AD到點(diǎn)E,使

已作,

______

中點(diǎn)定義,

______

探究得出AD的取值范圍是______;

(感悟)解題時(shí),條件中若出現(xiàn)中點(diǎn)”“中線等字樣,可以考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個(gè)三角形中.

(問題解決)

如圖2中,,,AD的中線,,,且,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案