【題目】先閱讀下面的材料,然后解答問(wèn)題.
通過(guò)計(jì)算,發(fā)現(xiàn):
方程x+=2+的解為x=2或x=;
方程x+=3+的解為x=3或x=;
方程x+=4+的解為x=4或x=;
…
(1)觀察猜想:求關(guān)于x的方程x+=n+的解;
(2)實(shí)踐運(yùn)用:對(duì)于關(guān)于x的方程x-=m-的解,小明觀察得“x=m”是該方程的一個(gè)解,請(qǐng)你猜想該方程的另一個(gè)解,并用方程的解的概念對(duì)該解進(jìn)行驗(yàn)證;
(3)拓展延伸:請(qǐng)利用上面的規(guī)律,求關(guān)于x的方程x+=a+的解.
【答案】(1)猜想:x=n或x=;(2) x=m或x=-.驗(yàn)證見(jiàn)解析; (3) x=a或x=.
【解析】
(1)(2)根據(jù)例題可以得到:方程的左邊與右邊的式子形式完全相同,只是左邊是未知數(shù),右邊是把未知數(shù)換成了具體的數(shù),則方程的解是方程右邊的兩部分,據(jù)此即可求解.
(3)利用得出的規(guī)律求出方程的解即可
(1)根據(jù)上面的規(guī)律,猜想:
關(guān)于x的方程x+=n+的解是x=n或x=.
(2)關(guān)于x的方程x-=m-的解是x=m或x=-.
驗(yàn)證:
當(dāng)x=m時(shí),顯然x-=m-;
當(dāng)x=-時(shí),x-=-+m=m-.
(3)x+=a+,
可得x-3+=a-3+,
可得x=a或x=+3=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某校九年級(jí)學(xué)生的跳高水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行跳高測(cè)試,并把測(cè)試成績(jī)繪制成如圖所示的頻數(shù)表和未完成的頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
某校九年級(jí)50名學(xué)生跳高測(cè)試成績(jī)的頻數(shù)表
組別(m) | 頻數(shù) |
1.09~1.19 | 8 |
1.19~1.29 | 12 |
1.29~1.39 | A |
1.39~1.49 | 10 |
(1)求a的值,并把頻數(shù)直方圖補(bǔ)充完整;
(2)該年級(jí)共有500名學(xué)生,估計(jì)該年級(jí)學(xué)生跳高成績(jī)?cè)?.29m(含1.29m)以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0),B(0,﹣ ),C(2,0),其對(duì)稱(chēng)軸與x軸交于點(diǎn)D
(1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)若P為y軸上的一個(gè)動(dòng)點(diǎn),連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對(duì)稱(chēng)軸上一動(dòng)點(diǎn)
①若平面內(nèi)存在點(diǎn)N,使得以A,B,M,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有 個(gè);
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某軟件科技公司20人負(fù)責(zé)研發(fā)與維護(hù)游戲、網(wǎng)購(gòu)、視頻和送餐共4款軟件.投入市場(chǎng)后,游戲軟件的利潤(rùn)占這4款軟件總利潤(rùn)的40%.如圖是這4款軟件研發(fā)與維護(hù)人數(shù)的扇形統(tǒng)計(jì)圖和利潤(rùn)的條形統(tǒng)計(jì)圖.
根據(jù)以上信息,網(wǎng)答下列問(wèn)題
(1)直接寫(xiě)出圖中a,m的值;
(2)分別求網(wǎng)購(gòu)與視頻軟件的人均利潤(rùn);
(3)在總?cè)藬?shù)和各款軟件人均利潤(rùn)都保持不變的情況下,能否只調(diào)整網(wǎng)購(gòu)與視頻軟件的研發(fā)與維護(hù)人數(shù),使總利潤(rùn)增加60萬(wàn)元?如果能,寫(xiě)出調(diào)整方案;如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一束光線在兩面玻璃墻內(nèi)進(jìn)行傳播,路徑為A→B→C→D,根據(jù)光的反射性質(zhì),∠1=∠2,∠3=∠4,若∠2+∠3=90°,試探究直線AB與CD是否平行?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一次函數(shù)的圖像經(jīng)過(guò)點(diǎn)A(-1,1),下列各點(diǎn)中在該函數(shù)圖象上的是( )
A. (1,5) B. (2,5) C. (-2,-2) D. (0,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科技有限公司準(zhǔn)備購(gòu)進(jìn)A和B兩種機(jī)器人來(lái)搬運(yùn)化工材料,已知購(gòu)進(jìn)A種機(jī)器人2個(gè)和B種機(jī)器人3個(gè)共需16萬(wàn)元,購(gòu)進(jìn)A種機(jī)器人3個(gè)和B種機(jī)器人2個(gè)共需14萬(wàn)元,請(qǐng)解答下列問(wèn)題:
(1)求A、B兩種機(jī)器人每個(gè)的進(jìn)價(jià);
(2)已知該公司購(gòu)買(mǎi)B種機(jī)器人的個(gè)數(shù)比購(gòu)買(mǎi)A種機(jī)器人的個(gè)數(shù)的2倍多4個(gè),如果需要購(gòu)買(mǎi)A、B兩種機(jī)器人的總個(gè)數(shù)不少于28個(gè),且該公司購(gòu)買(mǎi)的A、B兩種機(jī)器人的總費(fèi)用不超過(guò)106萬(wàn)元,那么該公司有哪幾種購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市有一塊長(zhǎng)為(2a+b)米,寬為(a+b)米的長(zhǎng)方形地塊,規(guī)劃部門(mén)計(jì)劃將陰影部分進(jìn)行綠化,中間將修建一座雕像.
(1)試用含a,b的代數(shù)式表示綠化的面積是多少平方米?
(2)若a=3,b=2,請(qǐng)求出綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).
(1)點(diǎn)C的坐標(biāo)是;
(2)將△ABC沿x軸正方向平移得到△A′B′C′,且B,C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B′,C′恰好落在反比例函數(shù)y= 的圖象上,求該反比例函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com