【題目】如圖,已知拋物線y=x2+bx+cx軸交于點AB,AB=2,與y軸交于點C,對稱軸為直線x=2

1)求拋物線的函數(shù)表達式;

2)根據(jù)圖象,直接寫出不等式x2+bx+c0的解集:______

3)設(shè)D為拋物線上一點,E為對稱軸上一點,若以點A,B,DE為頂點的四邊形是菱形,則點D的坐標(biāo)為:______

【答案】1y=x2-4x+3;(2x1x3 ; 3)(2,-1.

【解析】

(1)根據(jù)拋物線對稱軸的定義易求A(10),B(30).代入拋物線的解析式列方程組,解出即可求b、c的值;

(2)由圖象得:即y0時,x1x3;

(3)如圖,點D是拋物線的頂點,所以根據(jù)拋物線解析式利用頂點坐標(biāo)公式即可求得點D的坐標(biāo).

(1)∵AB=2,對稱軸為直線x=2

A的坐標(biāo)是(1,0),點B的坐標(biāo)是(3,0)

AB兩點的坐標(biāo)代入得:,解得:

拋物線的函數(shù)表達式為y=x2-4x+3;

(2)由圖象得:不等式x2+bx+c0,即y0時,x1x3

故答案為:x1x3;

(3)y=x2-4x+3=(x-2)2-1

頂點坐標(biāo)為(2,-1),

當(dāng)ED點在x軸的上方,即DE∥ABAE=AB=BD=DE=2,此時不合題意,

如圖,根據(jù)菱形ADBE的對角線互相垂直平分,拋物線的對稱性得到點D是拋物線y=x2-4x+3的頂點坐標(biāo),即(2-1),

故答案是:(2,-1)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成淡薄”、“一般”、“較強”、“很強四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)這次調(diào)查一共抽取了 名學(xué)生,其中安全意識為很強的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是

(2)請將條形統(tǒng)計圖補充完整;

(3)該校有1800名學(xué)生,現(xiàn)要對安全意識為淡薄”、“一般的學(xué)生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學(xué)生約有 名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形的頂點與坐標(biāo)原點重合,頂點分別在坐標(biāo)軸的正半軸上, ,在直線,直線與折線有公共點.

1)點的坐標(biāo)是

2)若直線經(jīng)過點,求直線的解析式;

3)對于一次函數(shù),當(dāng)的增大而減小時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為3的⊙O經(jīng)過等邊△ABO的頂點A、B,點P為半徑OB上的動點,連接AP,過點PPCAP交⊙O于點C,當(dāng)∠ACP=30°時,AP的長為( 。

A. 3B. 3C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

1)已知:如圖①,△ABC中請你用尺規(guī)在BC邊上找一點D,使得點A到點BC的距離最短.

2)托勒密(Ptolemy)定理指出,圓的內(nèi)接四邊形兩對對邊乘積的和等于兩條對角線的乘積.如圖②,P是正△ABC外接圓的劣弧BC上任一點(不與B、C重合),請你根據(jù)托勒密(Ptolemy)定理證明:PA=PB+PC

問題解決:

3)如圖③,某學(xué)校有一塊兩直角邊長分別為30m、60m的直角三角形的草坪,現(xiàn)準(zhǔn)備在草坪內(nèi)放置一對石凳及垃圾箱在點P處,使PA、B、C三點的距離之和最小,那么是否存在符合條件的點P?若存在,請作出點P的位置,并求出這個最短距離(結(jié)果保留根號);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點,直線x軸交于點

1)求的值;

2)過第二象限的點作平行于x軸的直線,交直線于點C,交函數(shù)的圖象于點D

①當(dāng)時,判斷線段PDPC的數(shù)量關(guān)系,并說明理由;

②若,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,延長ADE,使DEAD,連接EB,EC,DB,下列條件中,不能使四邊形DBCE成為菱形的是( 。

A.ABBEB.BEDCC.ABE90°D.BE平分∠DBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,,AD平分∠BAC,交BC于點D,點OAB上,⊙O經(jīng)過AD兩點,交AC于點E,交AB于點F

1)求證:BC是⊙O的切線;

2)若⊙O的半徑是2cm,E是弧AD的中點,求陰影部分的面積(結(jié)果保留π和根號)

查看答案和解析>>

同步練習(xí)冊答案