為推廣陽光體育“大課間”活動,我市某中學(xué)決定在學(xué)生中開設(shè)A:實心球.B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學(xué)生對四種項目的喜歡情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請計算本項調(diào)查中喜歡“立定跳遠”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整;
(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
科目:初中數(shù)學(xué) 來源: 題型:
如圖(3)所示的梯形梯子,AA′∥EE′,AB=BC=CD=DE,
A′B′=B′C′=C′D′=D′E′,AA′=60cm,EE′=80cm.則BB′的長為( )
A.0.65cm B.0.675cm C.0.725cm D.0. 75cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知x1、x2是方程x2-(k-2)x+k2+3k+5=0的兩個實數(shù)根,則+的最大值是
A.13 B.18 C.15 D.19
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線l :y=x+1交x軸于點A,交y軸于點B,點A1、A2、A3在x軸上, 點B1、B2、B3在直線l上.若△OB1A1,△A1B2A2,
△A2B3A3均為等邊三角形.
則:(1)∠BAO的度數(shù)是 ;
(2)△A2B3A3的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=-x 2+3與x軸交于點A、點B,與直線y=-x +b相交于點B、點C,直線y=-x +b與y軸交于點E.
(1)求直線BC的解析式.
(2)求△ABC的面積.
(3)若點M在線段AB上以每秒1個單位長度的速度從A向B運動(不與A、B重合),同時,點N在射線BC上以每秒2個單位長度的速度從B向C運動.設(shè)運動時間為t秒,請寫出△MNB的面積S與t的函數(shù)關(guān)系式,并求出點M運動多少時間時,△MNB的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
圖1是邊長分別為4和2的兩個等邊三角形紙片ABC和ODE疊放在一起(C與O重合).
(1)操作:固定△ABC,將△0DE繞點C順時針旋轉(zhuǎn)30°后得到△ODE,連結(jié)AD、BE,CE的延長線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
(2)在(1)的條件下將的△ODE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR,當點P與點F重合時停止運動(圖3)
探究:設(shè)△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)將圖1中△0DE固定,把△ABC沿著OE方向平移,使頂點C落在OE的中點G處,設(shè)為△ABG,然后將△ABG繞點G順時針旋轉(zhuǎn),邊BG交邊DE于點M,邊AG交邊DO于點N,設(shè)∠BGE=α(30°<α<90°);(圖4)
探究:在圖4中,線段ON·EM的值是否隨α的變化而變化?如果沒有變化,請你
求出ON·EM的值,如果有變化,請你說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com