【題目】操作發(fā)現(xiàn):如圖,已知△ABC和△ADE均為等腰三角形,AB=AC,AD=AE,將這兩個三角形放置在一起,使點B,D,E在同一直線上,連接CE.
(1)如圖1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求證:△BAD≌△CAE;
(2)在(1)的條件下,求∠BEC的度數(shù);
拓廣探索:(3)如圖2,若∠CAB=∠EAD=120°,BD=4,CF為△BCE中BE邊上的高,請直接寫出EF的長度.
【答案】(1)見解析;(2)70°;(3)2
【解析】
(1)根據(jù)SAS證明△BAD≌△CAE即可.
(2)利用全等三角形的性質(zhì)解決問題即可.
(3)同法可證△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解決問題.
(1)證明:如圖1中,
∵∠ABC=∠ACB=∠ADE=∠AED,
∴∠EAD=∠CAB,
∴∠EAC=∠DAB,
∵AE=AD,AC=AB,
∴△BAD≌△CAE(SAS).
(2)解:如圖1中,設AC交BE于O.
∵∠ABC=∠ACB=55°,
∴∠BAC=180°﹣110°=70°,
∵△BAD≌△CAE,
∴∠ABO=∠ECO,
∵∠EOC=∠AOB,
∴∠CEO=∠BAO=70°,
即∠BEC=70°.
(3)解:如圖2中,
∵∠CAB=∠EAD=120°,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS),
∴∠BAD=∠ACE,BD=EC=4,
同理可證∠BEC=∠BAC=120°,
∴∠FEC=60°,
∵CF⊥EF,
∴∠F=90°,
∴∠FCE=30°,
∴EF=EC=2.
科目:初中數(shù)學 來源: 題型:
【題目】2008年5月12日14時28分四川汶川發(fā)生里氏8.0級強力地震.某市接到上級通知,立即派出甲、乙兩個抗震救災小組乘車沿同一路線趕赴距出發(fā)點480千米的災區(qū).乙組由于要攜帶一些救災物資,比甲組遲出發(fā)1.25小時(從甲組出發(fā)時開始計時).圖中的折線、線段分別表示甲、乙兩組的所走路程y甲(千米)、y乙(千米)與時間x(小時)之間的函數(shù)關系對應的圖象.請根據(jù)圖象所提供的信息,解決下列問題:
(1)由于汽車發(fā)生故障,甲組在途中停留了 小時;
(2)甲組的汽車排除故障后,立即提速趕往災區(qū).請問甲組的汽車在排除故障時,距出發(fā)點的路程是多少千米?
(3)為了保證及時聯(lián)絡,甲、乙兩組在第一次相遇時約定此后兩車之間的路程不超過25千米,請通過計算說明,按圖象所表示的走法是否符合約定?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題原型:在圖①的矩形MNPQ中,點E、F、G、H分別在NP、PQ、QM、MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.
操作與探究:在圖②,圖③的矩形ABCD中,AB=4,BC=8點E、F分別在BC、CD邊上,試利用正方形網(wǎng)格分別作出兩圖中矩形ABCD的反射四邊形EFGH,并求出每個反射四邊形EFGH的周長.
發(fā)現(xiàn)與應用:由前面的操作可以發(fā)現(xiàn)一個矩形有不同的反射四邊形,且這些反射四邊形的周長都相等,若在圖①矩形MNPQ中,MN=3,NP=4則其反射四邊形EFGH的周長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2+mx+m2=0.
(1)求證:不論m取何實數(shù),該方程都有兩個不相等的實數(shù)根;
(2)若該方程的一個根為1,求該方程的另一根。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場為了吸引顧客,設立了一個可以自由轉動的轉盤(如圖,轉盤被平均分成份),并規(guī)定:顧客每購物滿元,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉盤,那么可直接獲得元的購物券.
求轉動一次轉盤獲得購物券的概率;
轉轉盤和直接獲得購物券,你認為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,D是AC邊上一點,∠A=36,∠C=72,∠ADB=108。
求證:(1)AD=BD=BC;
(2)點D是線段AC的黃金分割點。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料,再回答問題:有一些幾何圖形可以被某條直線分成面積相等的兩部分,我們將“把一個幾何圖形分成面積相等的兩部分的直線叫做該圖形的二分線”,如:圓的直徑所在的直線是圓的“二分線”,正方形的對角線所在的直線是正方形的“二分線”。
解決下列問題:
(1)菱形的“二分線”可以是____________________________________。
(2)三角形的“二分線”可以是__________________________________。
(3)在下圖中,試用兩種不同的方法分別畫出等腰梯形ABCD的“二分線”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com