如圖,ABCD、CEFG是正方形,E在CD上,直線BE、DG交于H,且HE•HB=,BD、AF交于M,當(dāng)E在線段CD(不與C、D重合)上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①BE⊥GD;②AF、GD所夾的銳角為45°;③GD=;④若BE平分∠DBC,則正方形ABCD的面積為4.其中正確的結(jié)論個(gè)數(shù)有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:①由已知條件可證得△BEC≌△DGC,∠EBC=∠CDG,因?yàn)椤螧DC+∠DBH+∠EBC=90°,所以∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正確;
②若以BD為直徑作圓,那么此圓必經(jīng)過(guò)A、B、C、H、D五點(diǎn),根據(jù)圓周角定理即可得到∠AHD=45°,所以②的結(jié)論也是正確的.
③此題要通過(guò)相似三角形來(lái)解;由②的五點(diǎn)共圓,可得∠BAH=∠BDH,而∠ABD=∠DBG=45°,由此可判定△ABM∽△DBG,根據(jù)相似三角形的比例線段即可得到AM、DG的比例關(guān)系;
④若BE平分∠DBC,那么H是DG的中點(diǎn);易證得△ABH∽△BCE,得BD•BC=BE•BH,即BC2=BE•BH,因此只需求出BE•BH的值即可得到正方形的面積,可先求出BE、EH的比例關(guān)系,代入已知的乘積式中,即可求得BE•BH的值,由此得解.
解答:解:①正確,證明如下:
∵BC=DC,CE=CG,∠BCE=∠DCG=90°,
∴△BEC≌△DGC,∴∠EBC=∠CDG,
∵∠BDC+∠DBH+∠EBC=90°,
∴∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正確;

②由于∠BAD、∠BCD、∠BHD都是直角,因此A、B、C、D、H五點(diǎn)都在以BD為直徑的圓上;
由圓周角定理知:∠DHA=∠ABD=45°,故②正確;

③由②知:A、B、C、D、H五點(diǎn)共圓,則∠BAH=∠BDH;
又∵∠ABD=∠DBG=45°,
∴△ABM∽△DBG,得AM:DG=AB:BD=1:,即DG=AM;
故③正確;

④過(guò)H作HN⊥CD于N,連接EG;
若BH平分∠DBG,且BH⊥DG,已知:BH垂直平分DG;
得DE=EG,H是DG中點(diǎn),HN為△DCG的中位線;
設(shè)CG=x,則:HN=x,EG=DE=x,DC=BC=(+1)x;
∵HN⊥CD,BC⊥CD,∴HN∥BC,
∴∠NHB=∠EBC,∠ENH=∠ECB,
∴△BEC∽△HEN,則BE:EH=BC:HN=2+2,即EH=;
∴HE•BH=BH•=4-2,即BE•BH=4;
∵∠DBH=∠CBE,且∠BHD=∠BCE=90°,
∴△DBH∽△EBC,得:DB•BC=BE•BH=4,
BC2=4,得:BC2=4,即正方形ABCD的面積為4;
故④正確;
因此四個(gè)結(jié)論都正確,故選D.
點(diǎn)評(píng):本題主要考查三角形相似和全等的判定及性質(zhì)、正方形的性質(zhì)以及圓周角定理等知識(shí)的綜合應(yīng)用,能夠判斷出A、B、C、D、H五點(diǎn)共圓是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,?ABCD中,E、F分別為AD、BC的中點(diǎn),AF與BE交于點(diǎn)M,CE與DF交于點(diǎn)N,請(qǐng)你在圖中找出三個(gè)平行四邊形(?ABCD除外)
?AFCE,?BEDF,?EMFN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計(jì)分.
甲:小東從A地出發(fā)以某一速度向B地走去,同時(shí)小明從B地出發(fā)以另-速度向A地而行.如圖所示,圖中精英家教網(wǎng)的線段y1、y2分別表示小東、小明離B地的距離(千米)與所用時(shí)間(小時(shí))的關(guān)系.
(1)試用文字說(shuō)明:交點(diǎn)P所表示的實(shí)際意義;
(2)試求y1、y2的解析式;
(3)試求出A、B兩地之間的距離.

乙:如圖,?ABCD中,E是BA的延長(zhǎng)線上一點(diǎn),CE與AD交于點(diǎn)F.
(1)求證:△AEF∽△DCF;精英家教網(wǎng)
(2)若AB=2AE,△AEF的面積為2
2
,求?ABCD的面積.

我選做的是
 
題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,?ABCD的對(duì)角線AC上兩點(diǎn)E、F,要使四邊形BEDF是平行四邊形,還要添加一個(gè)條件是
此題答案不唯一,如AE=CF或AF=CE等
此題答案不唯一,如AE=CF或AF=CE等
(只要添1個(gè)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•歷城區(qū)一模)如圖,?ABCD中,∠BCD的平分線CE交邊AD于E,∠ABC的平分線BG交CE于F,交AD于G.若AB=3,BC=5,求EG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:013

如圖, 正方形ABCD中, CE=MN, ∠MCE=35°,那么∠ANM是

[  ]

           

A.45°   

  

 B.55°  

  

C.65°  

  

D.75°

  

 

查看答案和解析>>

同步練習(xí)冊(cè)答案