已知二次函數(shù), 在和時(shí)的函數(shù)值相等.
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)的圖象與二次函數(shù)的圖象都經(jīng)過點(diǎn),求和的值;
(3)設(shè)二次函數(shù)的圖象與軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),將二次函數(shù)的圖象在點(diǎn)間的部分(含點(diǎn)和點(diǎn))向左平移個(gè)單位后得到的圖象記為,同時(shí)將(2)中得到的直線向右平移個(gè)單位.請結(jié)合圖象回答:當(dāng)平移后的直線與圖象有公共點(diǎn)時(shí),的取值范圍.
【解析】
(1)∵二次函數(shù)y=(t+1)x2+2(t+2)x+
在x=0和x=2時(shí)的函數(shù)值相等,
∴對稱軸x=-=1
即-=1
解得,t=-
則二次函數(shù)的解析式為:y=(-+1)x2+2(-+2)x+-
即y=-(x+1)(x-3)或y=-(x-1)2+2,
∴該函數(shù)圖象的開口方向向下,且經(jīng)過點(diǎn)(-1,0),(3,0),(0,),頂點(diǎn)坐標(biāo)是(1,2).其圖象如圖所示:
(2)∵二次函數(shù)的象經(jīng)過點(diǎn)A(-3,m),
∴m=-(-3+1)(-3-3)=-6.
又∵一次函數(shù)y=kx+6的圖象經(jīng)過點(diǎn)A(-3,m),
∴m=-3k+6,即-6=-3k+6,
解得,k=4.
綜上所述,m和k的值分別是-6、4.
(3)【解析】
由題意可知,點(diǎn)B、C間的部分圖象的解析式是y=- x2+x+=--(x2-2x-3)=--(x-3)(x+1),-1≤x≤3,
則拋物線平移后得出的圖象G的解析式是y=-(x-3+n)(x+1+n),-n-1≤x≤3-n,
此時(shí)直線平移后的解析式是y=4x+6+n,
如果平移后的直線與平移后的二次函數(shù)相切,
則方程4x+6+n=-(x-3+n)(x+1+n)有兩個(gè)相等的實(shí)數(shù)解,
即-- x2-(n+3)x- n2-=0有兩個(gè)相等的實(shí)數(shù)解,
判別式△=[-(n+3)]2-4×(-)×(- n2--)=6n=0,
即n=0,
∵與已知n>0相矛盾,
∴平移后的直線與平移后的拋物線不相切,
∴結(jié)合圖象可知,如果平移后的直線與拋物線有公共點(diǎn),
則兩個(gè)臨界的交點(diǎn)為(-n-1,0),(3-n,0),
則0=4(-n-1)+6+n,
n=,0=4(3-n)+6+n,
n=6,
即n的取值范圍是:≤n≤6
【解析】
試題分析:(1)根據(jù)已知條件知,該函數(shù)的對稱軸方程為x=1,則- =1,據(jù)此易求t的值,
把t的值代入函數(shù)解析式即可;根據(jù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo),頂點(diǎn)坐標(biāo)畫出圖象;
(2)把點(diǎn)A的坐標(biāo)代入二次函數(shù)解析式,利用方程可以求得m的值;然后把點(diǎn)A的坐標(biāo)代入一次
函數(shù)解析式,也是利用方程來求k的值.
(3)求出點(diǎn)B、C間的部分圖象的解析式是y=-(x-3+n)(x+1+n),-n-1≤x≤3-n,直線平移
后的解析式是y=4x+6+n,若兩圖象有一個(gè)交點(diǎn)時(shí),得出方程4x+6+n=- (x-3+n)(x+1+n)有
兩個(gè)相等的實(shí)數(shù)解,求出判別式△=6n=0,求出的n的值與已知n>0相矛盾,得出平移后
的直線與拋物線有兩個(gè)公共點(diǎn),設(shè)兩個(gè)臨界的交點(diǎn)為(-n-1,0),(3-n,0),代入直
線的解析式,求出n的值,即可得出答案.
考點(diǎn):用待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖像上點(diǎn)的特點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省龍巖市分校九年級上學(xué)期第三次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在扇形OAB中,∠AOB=90°,半徑OA=6.將扇形OAB沿過點(diǎn)B的直線折疊。點(diǎn)O恰好落在弧AB上點(diǎn)D處,折痕交OA于點(diǎn)C,求整個(gè)陰影部分的周長和面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年福建省福安市小片區(qū)九年級上學(xué)期半期考試數(shù)學(xué)試卷(解析版) 題型:選擇題
矩形、菱形、正方形都具有的性質(zhì)是( )
A.每一條對角線平分一組對角
B.對角線相等
C.對角線互相平分
D.對角線互相垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市平谷區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).設(shè)坐標(biāo)軸的單位長度為1cm,整點(diǎn)P從原點(diǎn)O出發(fā),作向上或向右運(yùn)動(dòng),速度為1cm/s.當(dāng)整點(diǎn)P從原點(diǎn)出發(fā)1秒時(shí),可到達(dá)整點(diǎn)(1,0)或(0,1);當(dāng)整點(diǎn)P從原點(diǎn)出發(fā)2秒時(shí),可到達(dá)整點(diǎn)(2,0)、(0,2)或 ;當(dāng)整點(diǎn)P從原點(diǎn)出發(fā)4秒時(shí),可以得到的整點(diǎn)的個(gè)數(shù)為 個(gè).當(dāng)整點(diǎn)P從原點(diǎn)出發(fā)n秒時(shí),可到達(dá)整點(diǎn)(x,y),則x、y和n的關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市平谷區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
在一個(gè)不透明的口袋中裝有5個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,5,從中隨機(jī)摸出一個(gè)小球,其標(biāo)號(hào)為偶數(shù)的概率為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市九年級上學(xué)期期中檢測數(shù)學(xué)試卷(解析版) 題型:解答題
某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場調(diào)查發(fā)現(xiàn),若以每箱50元價(jià)格出售,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年北京市九年級上學(xué)期期中檢測數(shù)學(xué)試卷(解析版) 題型:解答題
已知拋物線.
(1)用配方法將化成的形式;
(2)將此拋物線向右平移1個(gè)單位,再向上平移2個(gè)單位,求平移后所得拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年安徽省淮北市五校九年級上學(xué)期第三次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
一船在A處測得北偏東60°方向有一燈塔B,船向正東方向以每小時(shí)20海里的速度航行1.5小時(shí)到達(dá)C處時(shí),又觀測到燈塔B在北偏東15°方向上,求此時(shí)航船與燈塔相距多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年河北沙河二十冶第3中學(xué)八年級上學(xué)期主科抽測數(shù)學(xué)卷(解析版) 題型:選擇題
估計(jì)的大小在( )
A.5--6之間 B.6--7之間 C.7--8之間 D.8--9之間
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com