【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點G,
(1)觀察圖形,寫出圖中所有與∠AED相等的角.
(2)選擇圖中與∠AED相等的任意一個角,并加以證明.
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學決定在學生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學生對四種項目的喜歡情況,隨機調(diào)查了該校m 名學生最喜歡的一種項目(每名學生必選且只能選擇四種活動項目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計圖表:
學生最喜歡的活動項目的人數(shù)統(tǒng)計表
根據(jù)圖表中提供的信息,解答下列問題:
(1)m=;n=;p=.
(2)請根據(jù)以上信息直接補全條形統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該校2000 名學生中有多少名學生最喜歡跳大繩.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,點E在AD邊上運動,且不與點A和點D重合,連結(jié)CE,過點C作CF⊥CE交AB的延長線于點F,EF交BC于點G.
(1)求證:△CDE≌△CBF;
(2)當DE= 時,求CG的長;
(3)連結(jié)AG,在點E運動過程中,四邊形CEAG能否為平行四邊形?若能,求出此時DE的長;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中的點P和圖形M,給出如下的定義:若在圖形M上存在一點Q,使得P、Q兩點間的距離小于或等于1,則稱P為圖形M的關(guān)聯(lián)點.
(1)當⊙O的半徑為2時,
①在點P1( ,0),P2( , ),P3( ,0)中,⊙O的關(guān)聯(lián)點是 .
②點P在直線y=﹣x上,若P為⊙O的關(guān)聯(lián)點,求點P的橫坐標的取值范圍.
(2)⊙C的圓心在x軸上,半徑為2,直線y=﹣x+1與x軸、y軸交于點A、B.若線段AB上的所有點都是⊙C的關(guān)聯(lián)點,直接寫出圓心C的橫坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
(1)概念理解:
如圖1,在四邊形ABCD中,添加一個條件使得四邊形ABCD是“等鄰邊四邊形”.請寫出你添加的一個條件.
(2)問題探究:
①小紅猜想:對角線互相平分的“等鄰邊四邊形”是菱形,她的猜想正確嗎?請說明理由.
②如圖2,小紅畫了一個Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并將Rt△ABC沿∠ABC的平分線BB′方向平移得到△A′B′C′,連結(jié)AA′,BC′,小紅要使平移后的四邊形ABC′A′是“等鄰邊四邊形”,應平移多少距離(即線段BB′的長)?
(3)拓展應用:
如圖3,“等鄰邊四邊形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD為對角線,AC= AB,試探究BC,CD,BD的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某種電動汽車的性能,對這種電動汽車進行了抽檢,將一次充電后行駛的里程數(shù)分為A,B,C,D四個等級,其中相應等級的里程依次為200千米,210千米,220千米,230千米,獲得如下不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)問這次被抽檢的電動汽車共有幾輛?并補全條形統(tǒng)計圖;
(2)估計這種電動汽車一次充電后行駛的平均里程數(shù)為多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù) 的圖象如圖所示,點A0位于坐標原點,點A1 , A2 , A3 , …,A2008在y軸的正半軸上,點B1 , B2 , B3 , …,B2008在二次函數(shù) 位于第一象限的圖象上,若△A0B1A1 , △A1B2A2 , △A2B3A3 , …,△A2007B2008A2008都為等邊三角形,則△A2007B2008A2008的邊長= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明是個愛動腦筋的孩子,他在學完與圓有關(guān)的角圓周角、圓心角后,意猶未盡,又查閱到了與圓有關(guān)的另一種角﹣﹣﹣﹣﹣﹣弦切角.請同學們先仔細閱讀下面的材料,再完成后面的問題.
材料:頂點在圓上,一邊與圓相交,另一邊與圓相切的角叫做弦切角.如圖1,弧 是弦切角∠PAB所夾的弧,他發(fā)現(xiàn)弦切角與它所夾的弧所對的圓周角有關(guān)系.
問題1:如圖2,直線DB切⊙O于點A,∠PCA是圓周角,當圓心O位于邊AC上時,
求證:∠PAD=∠PCA,請你寫出這個證明過程.
問題拓展:
如果圓心O不在∠PCA的邊上,∠PAD=∠PCA還成立嗎?如圖3,當圓心O在∠PCA的內(nèi)部時,小明證明了這個結(jié)論是成立的.他的思路是:作直線AE,聯(lián)結(jié)PE,由問題1的結(jié)論可知∠PAD=∠PEA,而∠PCA=∠PEA,從而證明∠PAD=∠PC.
問題2:如圖4,當圓心O在∠PCA的外部時,∠PAD=∠PCA仍然成立.請你仿照小明的思路證明這個結(jié)論.
運用:如圖5,AD是△ABC中∠BAC的平分線,經(jīng)過點A的⊙O與BC切于點D,與AB、AC分別相交于E、F.求證:EF∥BC.(提示:可以直接使用本題中的結(jié)論)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com