如圖,在平面直角坐標(biāo)系中,將直線y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后恰好經(jīng)過(guò)B(-3,0)及y軸上的C點(diǎn).若拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),且經(jīng)過(guò)點(diǎn)C,其對(duì)稱(chēng)軸與直線BC交于點(diǎn)E,與x軸交于點(diǎn)F.
(1)求直線BC及拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,點(diǎn)P在拋物線的對(duì)稱(chēng)軸上,若∠APD=∠ACB,求點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)M,使得直線CM把四邊形EFOC分成面積相等的兩部分?若存在,請(qǐng)求出直線CM的解析式;若不存在,請(qǐng)說(shuō)明理由.

解:(1)∵y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后經(jīng)過(guò)y軸上的點(diǎn)C,
∴此時(shí)直線的解析式為y=kx-3,令x=0,則y=-3,
∴C(0,-3),
設(shè)直線BC的解析式為y=kx-3.
∵B(-3,0)在直線BC上,
∴-3k-3=0解得k=-1.
∴直線BC的解析式為y=-x-3.
∵拋物線y=-x2+bx+c過(guò)點(diǎn)B,C,
,
解得,
∴拋物線的解析式為y=-x2-4x-3;

(2)由y=-x2-4x-3.可得D(-2,1),A(-1,0).
∴OB=3,OC=3,OA=1,AB=2,
可得△OBC是等腰直角三角形.
∴∠OBC=45°,CB=3
設(shè)拋物線對(duì)稱(chēng)軸與x軸交于點(diǎn)F,
∴AF=AB=1.
過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E.
∴∠AEB=90°.
可得BE=AE=,CE=2,
在△AEC與△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.
=,=,解得,PF=2,
∵點(diǎn)P在拋物線的對(duì)稱(chēng)軸上,
∴點(diǎn)P的坐標(biāo)為(-2,-2),(-2,2)(不合題意舍去).

(3)存在.
∵D(-2,1),C(0,-3),直線BC的解析式為y=-x-3,
∴F(-2,0),E(-2,-1),
∴S梯形EFOC=(EF+OC)•OF=×(1+3)×2=4,
∵當(dāng)直線CM過(guò)點(diǎn)F時(shí),S△OCF=OC•OF=×3×2=3>S梯形EFOC=2,
∴直線必過(guò)線段OF,設(shè)直線CM與線段OF相較于點(diǎn)G(x,0),則S△OCG=OC•OG=×3×
(-x)=2,解得x=-,
∴G(-,0),
設(shè)直線CM的解析式為y=kx+b(k≠0),
∵C(0,-3),G(-,0)在直線CM上,
,解得,
∴直線cm的解析式為y=-x-3,
,解得
∴直線CM的解析式為y=-x-3.
分析:(1)先根據(jù)y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后經(jīng)過(guò)y軸上的點(diǎn)C求出C點(diǎn)的坐標(biāo),再用待定系數(shù)法求出直線BC的解析式,再根據(jù)拋物線y=-x2+bx+c過(guò)點(diǎn)B,C,把B、C兩點(diǎn)的坐標(biāo)代入所設(shè)函數(shù)解析式即可求出此解析式;
(2)根據(jù)(1)中二次函數(shù)的解析式可求出A、D兩點(diǎn)的坐標(biāo),判斷出△OBC是等腰直角三角形,利用銳角三角函數(shù)的定義可求出∠OBC的度數(shù),過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,利用勾股定理可求出BE、AE及CE的長(zhǎng),再根據(jù)相似三角形的判定定理可得出△AEC∽△AFP,根據(jù)相似三角形的對(duì)應(yīng)邊成比例可求出PF的長(zhǎng),再點(diǎn)P在拋物線的對(duì)稱(chēng)軸上即可求出點(diǎn)P的坐標(biāo);
(3)先根據(jù)梯形的面積公式求出四邊形EFOC的面積,再假設(shè)直線過(guò)點(diǎn)F,求出△OCF的面積與四邊形EFOC的面積的一半相比較可知,直線必過(guò)線段OF,再假設(shè)直線CM與線段OF相較于點(diǎn)G(x,0),再根據(jù)三角形的面積公式求出x的值,利用待定系數(shù)法求出直線CG的解析式,再求出此直線與拋物線的交點(diǎn)即可.
點(diǎn)評(píng):本題考查的是二次函數(shù)綜合題,涉及到二次函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題、梯形及三角形的面積等相關(guān)知識(shí),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案