解:(1)∵y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后經(jīng)過(guò)y軸上的點(diǎn)C,
∴此時(shí)直線的解析式為y=kx-3,令x=0,則y=-3,
∴C(0,-3),
設(shè)直線BC的解析式為y=kx-3.
∵B(-3,0)在直線BC上,
∴-3k-3=0解得k=-1.
∴直線BC的解析式為y=-x-3.
∵拋物線y=-x
2+bx+c過(guò)點(diǎn)B,C,
∴
,
解得
,
∴拋物線的解析式為y=-x
2-4x-3;
(2)由y=-x
2-4x-3.可得D(-2,1),A(-1,0).
∴OB=3,OC=3,OA=1,AB=2,
可得△OBC是等腰直角三角形.
∴∠OBC=45°,CB=3
.
設(shè)拋物線對(duì)稱(chēng)軸與x軸交于點(diǎn)F,
∴AF=
AB=1.
過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E.
∴∠AEB=90°.
可得BE=AE=
,CE=2
,
在△AEC與△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.
∴
=
,
=
,解得,PF=2,
∵點(diǎn)P在拋物線的對(duì)稱(chēng)軸上,
∴點(diǎn)P的坐標(biāo)為(-2,-2),(-2,2)(不合題意舍去).
(3)存在.
∵D(-2,1),C(0,-3),直線BC的解析式為y=-x-3,
∴F(-2,0),E(-2,-1),
∴S
梯形EFOC=
(EF+OC)•OF=
×(1+3)×2=4,
∵當(dāng)直線CM過(guò)點(diǎn)F時(shí),S
△OCF=
OC•OF=
×3×2=3>
S
梯形EFOC=2,
∴直線必過(guò)線段OF,設(shè)直線CM與線段OF相較于點(diǎn)G(x,0),則S
△OCG=
OC•OG=
×3×
(-x)=2,解得x=-
,
∴G(-
,0),
設(shè)直線CM的解析式為y=kx+b(k≠0),
∵C(0,-3),G(-
,0)在直線CM上,
∴
,解得
,
∴直線cm的解析式為y=-
x-3,
∴
,解得
或
.
∴直線CM的解析式為y=-
x-3.
分析:(1)先根據(jù)y=kx沿y軸向下平移3個(gè)單位長(zhǎng)度后經(jīng)過(guò)y軸上的點(diǎn)C求出C點(diǎn)的坐標(biāo),再用待定系數(shù)法求出直線BC的解析式,再根據(jù)拋物線y=-x
2+bx+c過(guò)點(diǎn)B,C,把B、C兩點(diǎn)的坐標(biāo)代入所設(shè)函數(shù)解析式即可求出此解析式;
(2)根據(jù)(1)中二次函數(shù)的解析式可求出A、D兩點(diǎn)的坐標(biāo),判斷出△OBC是等腰直角三角形,利用銳角三角函數(shù)的定義可求出∠OBC的度數(shù),過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,利用勾股定理可求出BE、AE及CE的長(zhǎng),再根據(jù)相似三角形的判定定理可得出△AEC∽△AFP,根據(jù)相似三角形的對(duì)應(yīng)邊成比例可求出PF的長(zhǎng),再點(diǎn)P在拋物線的對(duì)稱(chēng)軸上即可求出點(diǎn)P的坐標(biāo);
(3)先根據(jù)梯形的面積公式求出四邊形EFOC的面積,再假設(shè)直線過(guò)點(diǎn)F,求出△OCF的面積與四邊形EFOC的面積的一半相比較可知,直線必過(guò)線段OF,再假設(shè)直線CM與線段OF相較于點(diǎn)G(x,0),再根據(jù)三角形的面積公式求出x的值,利用待定系數(shù)法求出直線CG的解析式,再求出此直線與拋物線的交點(diǎn)即可.
點(diǎn)評(píng):本題考查的是二次函數(shù)綜合題,涉及到二次函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題、梯形及三角形的面積等相關(guān)知識(shí),難度較大.