如圖,將矩形紙片ABCD沿對(duì)角線AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′與CD交于點(diǎn)E,AB=8,DE=3,P為線段AC上的任意一點(diǎn),PG⊥AE于G,PH⊥EC于H,則PG+PH的值為_(kāi)_______.

4
分析:延長(zhǎng)HP交AB于M,則PM⊥AB,PG=PM,PG+PH=HM=AD,根據(jù)CE=AE=CD-DE=8-3=5,在Rt△ADE中,由勾股定理得到AD=4,得出PG+PH=HM=AD.
解答:延長(zhǎng)HP交AB于M,
由折疊的性質(zhì)可知,∠EAC=∠CAB,
∵CD∥AB,
∴∠CAB=∠ECA,
∴∠EAC=∠ECA,
∴AE=EC=8-3=5.
在△ADE中,AD=4,
∵延長(zhǎng)HP交AB于M,則PM⊥AB,
∴PG=PM.
∴PG+PH=PM+PH=HM=AD=4.
點(diǎn)評(píng):此題主要考查了折疊的性質(zhì)以及矩形的性質(zhì)、勾股定理等知識(shí),根據(jù)折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,將矩形紙片ABCD沿EF折疊,使點(diǎn)A與點(diǎn)C重合,點(diǎn)D落在點(diǎn)G處,EF為折痕.
(1)求證:△FGC≌△EBC;
(2)若AB=8,AD=4,求四邊形ECGF(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)動(dòng)手操作:
如圖①,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)c'處,折痕為EF,若∠ABE=20°,那么∠EFC'的度數(shù)為
 

(2)觀察發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過(guò)點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開(kāi)紙片(如圖②);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖③).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請(qǐng)說(shuō)明理由.
精英家教網(wǎng)
(3)實(shí)踐與運(yùn)用:
將矩形紙片ABCD 按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MN和PQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開(kāi)紙片,此時(shí)恰好有MP=MN=PQ(如圖④),求∠MNF的大。
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•松北區(qū)三模)如圖,將矩形紙片ABCD折痕,使點(diǎn)D落在點(diǎn)線段AB的中點(diǎn)F處.若AB=4,則邊BC的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將矩形紙片ABCD沿其對(duì)角線AC折疊,使點(diǎn)B落到點(diǎn)B′的位置,AB′與CD交于點(diǎn)E.
(1)求證:△AEC是等腰三角形;
(2)若P為線段AC上一動(dòng)點(diǎn),作PG⊥AB′于G、PH⊥DC于H,求證:PG+PH=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察與發(fā)現(xiàn):
(1)小明將三角形紙片ABC(AB>AC)沿過(guò)點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開(kāi)紙片(如圖①);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認(rèn)為△AEF是什么形狀的三角形?為什么?
精英家教網(wǎng)
實(shí)踐與運(yùn)用:
如圖,將矩形紙片ABCD按如下順序進(jìn)行折疊:對(duì)折、展平,得折痕EF(如圖①);沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖②);展平,得折痕GC(如圖③);沿GH折疊,使點(diǎn)C落在DH上的點(diǎn)C′處(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC′、GH(如圖⑥).
(2)在圖②中連接BB′,判斷△BCB′的形狀,請(qǐng)說(shuō)明理由;
(3)圖⑥中的△GCC′是等邊三角形嗎?請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案